Total number of printed pages-7

3 (Sem-3/CBCS) PHY HC 1

2021 (Held in 2022)

PHYSICS

(Honours)

Paper : PHY-HC-3016

(Mathematical Physics-II)

Full Marks : 60

Time : Three hours

The figures in the margin indicate full marks for the questions.

1. Answer the following questions : (each question carries **one** mark) 1×7=7

- (a) Show that $P_n(-x) = (-1)^n P_n(x)$.
- (b) $L_1(x) L_0(x) = ?$

C DI OH YHA ROBO Contd.

(c) Express the one-dimensional heat flow equation.

(d)
$$\int_{0}^{\infty} e^{-x} x^{2n-1} dx = ?$$

(e)
$$\beta\left(\frac{1}{2},\frac{1}{2}\right) = ?$$

(f) Square matrix = Symmetric matrix +?

- (g) If, $\mu^{-1}M \mu = M'$, then show that Tr M = Tr M'.
- 2. Answer the following questions : (each question carries **2** marks) 2×4=8
 - (a) Show that x=0 is a regular singular print for the following differential equation :

$$2x^{2}\frac{d^{2}y}{dx^{2}} + 3x\frac{dy}{dx} + (x^{2} - 4)y = 0$$

(b) Can we express the one-dimensional Schrödinger's equation

$$-\frac{\hbar^2}{2m}\frac{\partial^2\psi(x,t)}{\partial t^2} + V\psi(x,t) = i\hbar\frac{\partial\psi}{\partial t}(x,t)$$

in terms of space dependent and time independent equations if V is a function of both x and t? Explain.

(c) Show that $\beta(l, m) = \beta(m, l)$.

(d) Show that the matrix

$$\sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

is Hermitian as well as unitary.

3. Answer **any three** questions from the following : (each question carries **5** marks) 5×3=15

> (a) By the separation of variable method, solve the t-dependent part of the following equation : 5

$$\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$$

3 (Sem-3/CBCS) PHY HC 1/G

3 Contd.

(b) If $\begin{pmatrix} x \\ y \end{pmatrix}$ transforms to $\begin{pmatrix} x' \\ y' \end{pmatrix}$ in the

way — $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \text{ then}$

show that $x'^2 + y'^2 = x^2 + y^2$. Verify that the transformation matrix is orthogonal. 2+3=5

(c) How many real numbers are required to express a general complex matrix of dimension 2 × 2? Show that a 2 × 2 Hermitian matrix of dimension 2 × 2 carries four real numbers. Also, show that a skew-Hermitian matrix of dimension 2 × 2 carries only the real numbers. 1+2+2=5

(d) Find the Fourier's series representing f(x) = x, $0 < x < 2\pi$, and sketch its graph from $x = -4\pi$ to $x = +4\pi$.

3+2=5

3 (Sem – 3/CBCS) PHY HC 1/G 4

11 (0707/c-100

(e) Show that

$$L'_{n}(x) - n L'_{n-1}(x) + n L_{n-1}(x) = 0.$$
 5

4. If, $y = \sum_{k=0}^{\infty} a_k x^{m+k}$ happens to be the power

series solution of the equation,

 $2x(1-x)\frac{d^2y}{dx^2} + (1-x)\frac{dy}{dx} + 3y = 0$, then show

that
$$a_{k+1} = \frac{-2m - 2k + 3}{2m + 2k + 1}$$
 10

Or

Show the following : 4+3+3=10

- (1) $(n+1) P_{n+1} = (2n+1) x P_n n P_{n-1}$
- (2) $nP_n = xP'_n P'_{n-1}$

(3)
$$P'_{n+1} - P'_{n-1} = (2n+1) P_n$$

3 (Sem-3/CBCS) PHY HC 1/G 5 3 COLOR UNIT Contd.

5. Solve the equation

given that, $\psi(t=0) = 0$ and $\frac{\partial \psi}{\partial t}\Big|_{x=0} = 0$ $\psi(t=0) = \sum \alpha_{x} x^{m}$ happens to be the power

series solution of ti**r0** coustion

Consider a vibrating string of length *l* fixed at both ends, given that

$$y(0, t) = 0, y(l, t) = 0$$

$$y(x, 0) = f(x), \frac{\partial y}{\partial t}(x, 0) = 0; \quad 0 < x < l$$

Solve completely the equation of vibrating string

$$\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}.$$
 10

6. If $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix}$, obtain A^{-1} .

From the matrix equation

 $\begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} -3 & 2 \\ 5 & -3 \end{pmatrix} = \begin{pmatrix} -2 & 4 \\ 3 & -1 \end{pmatrix},$ obtain, a, b, c, d. 4+6=10

3 (Sem-3/CBCS) PHY HC 1/G

6

Obtain the eigenvalues and eigenvectors of the matrix

$$M = \begin{pmatrix} 2 & -i \\ i & 2 \end{pmatrix}$$

and hence diagonalize the same. 4+6=10