Total number of printed pages-7

3 (Sem-3/CBCS) MAT HC 2

2021 (Held in 2022) MATHEMATICS (Honours) Paper : MAT-HC-3026 (Group Theory-I) Full Marks : 80 Time : Three hours

The figures in the margin indicate full marks for the questions.

1. Answer the following questions: 1×10=10

- (a) Give the condition on n under which the set $\{1, 2, 3, ..., n-1\}$, n > 1 is a group under multiplication modulo n.
- (b) Define a binary operation on the set
 ℝⁿ = {(a₁, a₂, ..., a_n): a₁, a₂, ..., a_n ∈ ℝ}
 for which it is a group.

Contd.

- (c) What is the centre of the dihedral group of order 2n?
- (d) Write the generators of the cyclic group Z (the group of integers) under ordinary addition.
- (e) Show by an example that the decomposition of a permutation into a product of 2-cycles is not unique.
- (f) Find the cycles of the permutation :

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 5 & 4 & 3 & 1 & 2 \end{pmatrix}$$

(g) Find the order of the permutation :

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 6 & 5 & 1 & 3 \end{pmatrix}$$

(h) Let G be the multiplicative group of all non-singular n × n matrices over R and let R* be the multiplicative group of all non-zero real numbers. Define a homomorphism from G to R*.

3 (Sem – 3/CBCS) MAT HC2/G 2

- (i) What do you mean by an isomorphism between two groups ?
- (j) State the second isomorphism theorem.
- 2. Answer the following questions : 2×5=10
 - (a) Let G be a group and $a \in G$. Show that $\langle a \rangle$ is a subgroup of G.
 - (b) If G is a finite group, then order of any element of G divides the order of G.
 Justify whether this statement is true or false.
 - (c) Show that a group of prime order cannot have any non-trivial subgroup. Is it true for a group of finite composite order ?
 - (d) Consider the mapping ϕ from the group of real numbers under addition to itself given by $\phi(x) = [x]$, the greatest integer less than or equal to x. Examine whether ϕ is a homomorphism.

3 (Sem-3/CBCS) MAT HC2/G 3 D DISOH TAM POST Contd.

(e) Let ϕ be an isomorphism from a group

G onto a group H. Prove that ϕ^{-1} is also an isomorphism from H onto G.

3. Answer the following questions : 5×4=20

(a) Show that a finite group of even order has at least one element of order 2.

if G is a finite c**rO** ip, then order of any

Let N be a normal subgroup of a group G. Show that G/N is abelian if and only if for all $x, y \in G$, $xyx^{-1}y^{-1} \in N$.

(b) Show that if a cyclic subgroup K of a group G is normal in G, then every subgroup of K is normal in G.

liset of mining Or

Show that converse of Lagrange's theorem holds in case of finite cyclic groups.

(c) Consider the group $G = \{1, -1\}$ under multiplication. Define $f : \mathbb{Z} \to G$ by

f(x) = 1, if *n* is even = -1, if *n* is odd

Show that f is a homomorphism from \mathbb{Z} to G.

(d) Let $f: G \to G'$ be a homomorphism. Let $a \in G$ be such that o(a) = n and o(f(a)) = m. Prove that o(f(a))/o(a), and if f is one-one, then m = n.

4. Answer the following questions: 10×4=40

group G. Define H" Lyn" eg he H

(a) Let G be a group and x, y ∈ G be such that xy² = y³x and yx² = x³y. Then show that x = y = e, where e is the identity element of G.

3 (Sem-3/CBCS) MAT HC2/G 5 0 Contd.

Give an example to show that the product of two subgroups of a group is not a subgroup in general. Also show that if H and K are two subgroups of a group G, then HK is a subgroup of G if and only if HK = KH. 2+8=10

 (b) Prove that the order of a cyclic group is equal to the order of its generator.
 10

Or

Let *H* be a non-empty subset of a group *G*. Define $H^{-1} = \{h^{-1} \in G : h \in H\}$. Show that

(i) if H is a subgroup of G, then HH = H, $H = H^{-1}$ and $HH^{-1} = H$; (ii) if H and K are subgroups of G, then $(HK)^{-1} = K^{-1}H^{-1}$. 5+5=10

3 (Sem-3/CBCS) MAT HC2/G 6

(c) Let G be a group and Z(G) be the centre of G. If G/Z(G) is cyclic, then show that G is abelian. 10

Or

State and prove Lagrange's theorem. 10

(d) Let H and K be two normal subgroups of a group G such that $H \subseteq K$. Show

that
$$G/K \cong \frac{G/H}{K/H}$$
. 10

Or

Prove Cayley's theorem. 10

4500