Total number of printed pages-8

0 = 0 + 0.2 + 202 + 3 (Sem-3/CBCS) MAT HC 3

2021 (Held in 2022) MATHEMATICS (Honours) Paper : MAT-HC-3036 (Analytical Geometry) Full Marks : 80 Time : Three hours

The figures in the margin indicate full marks for the questions.

noifed. If The man is a generator of the cone

1. Answer the following questions : 1×10=10

(i) What is the nature of the conic represented by

 $4x^{2} - 4xy + y^{2} - 12x + 6y + 9 = 0$?

(ii) Define skew lines.

2 DIECH TAM (2080 Contd.

(iii) Under what condition

 $ax^{2} + 2hxy + by^{2} + 2gx + 2fy + c = 0$ may represents a pair of parallel straight lines ?

- (iv) If the axes are rectangular, find the direction cosines of the normal to the plane x + 2y 2z = 9.
- (v) Write down the conditions under which the general equation of second degree $ax^2 + by^2 + cz^2 + 2ux + 2vy + 2wz + d = 0$ represents a sphere.

(vi) If $\frac{x}{l} = \frac{y}{m} = \frac{z}{n}$ is a generator of the cone represented by the homogeneous equation f(x, y, z), then what is the value of f(l, m, n)?

(vii) What is meant by diametral plane of a conicoid ?

3 (Sem-3/CBCS) MAT HC3/G 2

(viii) Find the equation of the line $\frac{x}{a} + \frac{y}{b} = 2$, when the origin is transferred to the point (a, b).

- (ix) Find the point on the conic $\frac{8}{r} = 3 - \sqrt{2}\cos\theta$ whose radius vector is 4.
 - (x) What is the polar equation of a circle when the pole is at the centre ?

2. Answer the following questions: 2×5=10

(a) Write down the equation to the cone whose vertex is the origin and which passes through the curve of intersection of the plane lx + my + nz = p and the surface $ax^2 + by^2 + cz^2 = 1$.

(b) Transform the equation $x^2 - y^2 = a^2$ by taking the perpendicular lines y - x = 0and y + x = 0 as coordinate axes.

3 (Sem-3/CBCS) MAT HC3/G 3 Contd.

same origin the expression ax + bu

- (c) If $(at_1^2, 2at_1)$ and $(at_2^2, 2at_2)$ are the extremities of any focal chord of the parabola $y^2 = 4ax$, then prove that $t_1t_2 = -1$.
- (d) Find the centre and foci of the hyperbola $x^2 y^2 = a^2$.

(e) Find where the line $\frac{x-1}{2} = \frac{y-2}{-3} = \frac{z+3}{4}$ meets the plane x + y + z = 3.

3. Answer **any four**: 5×4=20

(a) 'If by transformation from one set of rectangular axes to another with the same origin the expression ax + bychanges to a'x' + b'y', prove that

 $a^2 + b^2 = a'^2 + b'^2$.

and w + x = 0 as coordinate axe

3 (Sem – 3/CBCS) MAT HC3/G 4

(b) Prove that the equation $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ represents a pair of parallel straight lines, if $\frac{a}{h} = \frac{h}{b} = \frac{g}{f}$. (c) Find the condition that line

$$\frac{l}{r} = A\cos\theta + B\sin\theta$$

may touch the conic $\frac{l}{r} = 1 - e \cos \theta$.

(d) Find the equation to the plane which cuts $x^2 + 4y^2 - 5z^2 = 1$ in a conic whose centre is the point (2,3,4).

(e) Show that the equation to the cone whose vertex is origin and base is z = k, f(x, y) = 0 is $f\left(\frac{kx}{z}, \frac{ky}{z}\right) = 0$.

3 (Sem-3/CBCS) MAT HC3/G 5 O DALOH TAM (2011 Contd.)

A variable plane is at a constant distance p from the origin and meets the axes, which are rectangular in A, B, C. Through A, B, C planes are drawn parallel to the coordinate planes, show that locus of their point of intersection is given by $x^{-2} + y^{-2} + z^{-2} = p^{-2}$.

4. Answer the following questions: 10×4=40
(a) Find the point of intersection of the lines represented by the equation
ax² + 2hxy + by² + 2gx + 2fy + c = 0.

(b) Show that the equation

 $9x^2 - 24xy + 16y^2 - 18x - 101y + 19 = 0$ represents a parabola and it can be reduced to the standard form $Y^2 = 3X$. Find the coordinates of the vertex and the focus.

3 (Sem-3/CBCS) MAT HC3/G 6

(f)

- (c) Prove that the sum of the reciprocals of two perpendicular focal chords of a conic is constant.
- (d) Show that the ortho-centre of the triangle formed by the lines $ax^2 + 2hxy + by^2 = 0$ and lx + my = 1 is

given by $\frac{x}{l} = \frac{y}{m} = \frac{a+b}{am^2 - 2hlm + bl^2}$

- (e) Find the condition that the plane lx + my + nz = p may touch the conicoid $ax^2 + by^2 + cz^2 = 1$. Verify that the plane 2x - 2y + 8z = 9 touches the ellipsoid $x^2 + 2y^2 + 3z^2 = 9$.
- (f) Show that the shortest distance between any two opposite edges of the tetrahedron formed by the planes y+z=0, z+x=0, x+y=0,

x+y+z=a is $\frac{2a}{\sqrt{6}}$ and that the three lines of shortest distance intersect at the point x = y = z = -a.

3 (Sem-3/CBCS) MAT HC3/G 7

Contd.

(g) Find the equation to the cylinder generated by the lines drawn through the points of the circle

x + y + z = 1, $x^{2} + y^{2} + z^{2} = 4$ which are

parallel to the line $\frac{x}{2} = \frac{y}{-1} = \frac{z}{2}$.

(h) A variable plane is parallel to the given

plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 0$ and meets the axes in *A*, *B*, *C* respectively. Prove that the circle *ABC* lies on the cone $yz\left(\frac{b}{c} + \frac{c}{b}\right) + zx\left(\frac{c}{a} + \frac{a}{c}\right) + xy\left(\frac{a}{b} + \frac{b}{a}\right) = 0$.

y + z = 0, z + x = 0, x + y = 0, x + y + z = a is $\frac{2a}{\sqrt{6}}$ and that the three lines of shortest distance intersect at the point $\dot{x} = y = z = -a$

8

3 (Sem-3/CBCS) MAT HC3/G