3 (Sem-5/CBCS) CHE HE 4/HE 5/HE 6

2021

(Held in 2022)

CHEMISTRY

(Honours Elective)

Answer the Questions from any one Option. OPTION-A

Paper: CHE-HE-5046

(Novel Inorganic Solids)

Full Marks : 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following as directed: $1 \times 7 = 7$
 - (a) The colour of gold nanoparticles is
 - (i) yellow
 - (ii) orange
 - (iii) red
 - (iv) variable (Choose the correct answer)

- (b) Carbon nanotubes are also known as _____. (Fill in the blank)
- (c) What is the basis of classification of composite materials?
- (d) Quartz is an acidic refractory.

 (State True or False)
- (e) What are fullerides?
- (f) Give an example of a magnetic material used in data storage devices.
- (g) What is solid electrolyte made of?
- 2. Answer the following questions: 2×4=8
 - (a) What are inorganic pigments? How are they different from organic pigments?
 - (b) What is the amount (%) of carbon in pure iron, cast iron and steel?
 - (c) What are superalloys? Mention two important applications of superalloy.
 - (d) Distinguish between natural and artificial nanoparticles.
- 3. Anwer any three questions: 5×3=15
 - (a) What are solid-state electrolytes (SSEs)? In which batteries SSEs are used?

 3+2=5

- (b) Discuss a method for the synthesis of silver nanoparticles. What is the colour of silver nanoparticles? 4+1=5
- (c) What is the role of matrix in a composite material? Discuss the advantages of composite materials.

2+3=5

- (d) What are polymer matrix materials?

 Mention their important applications.

 Why are polymer matrix materials better than metals?

 1+2+2=5
- (e) Based on the composition, how are ceramic materials classified? Discuss each of them. 2+3=5
- 4. Answer any three of the following questions: 10×3=30
 - (a) (i) Discuss the top-down and bottomup approach in nanomaterial synthesis. 2½+2½=5
 - (ii) What is the molecular structure of carbon nanotubes? What are their uses in carbon nanotechnology? 3+2=5
 - (b) Write notes on the following: $2\frac{1}{2} \times 4 = 10$
 - (i) Hydrothermal synthesis (ii) Thermoplastics

	Molecu				
(iv)	Green	syn	thesis	of	nanoparticles

- (c) (i) Discuss the effects of environmental factors on composite materials.
 - (ii) What are fibre-reinforced composites? Discuss their applications. 2+3=5
- (d) What are alloying elements? Discuss the various types of aluminium alloys and their uses. 2+8=10
- (e) What is DNA nanotechnology? Write a brief note on biological applications of DNA nanomaterials. 3+7=10
- (f) Discuss the various methods used in the synthesis of inorganic solids. 10

OPTION-B

Paper: CHE-HE-5056

(Polymer Chemistry)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following as directed: 1×7=7
 - (a) What do you mean by degree of polymerization?
 - (b) What is an inorganic polymer?
 - (c) Arrange the following polymers in increasing order of intermolecular forces:

Buna-S, Polythene, Nylon 6,6

- (d) What is super fibre?
- (e) Which of the following natural products is not a polymer?
 - (i) DNA
 - (ii) Cellulose
 - (iii) ATP
 - (iv) Urease

(Choose the correct answer)

- (f) Example of addition polymer is -
 - (i) Buna-S
 - (ii) Bakelite
 - (iii) Nylon-6
 - (iv) Dacron
- (g) Write the IUPAC name of

$$\begin{pmatrix} -CH_2 - CH - \\ | \\ OH \end{pmatrix}$$

- 2. Answer the following questions: $2\times4=8$
 - (a) Draw the structure of the monomers of the following polymers
 - (i) Teflon
 - (ii) Polythene
 - (b) What is Ziegler-Natta catalysts?
 - (c) Describe the classification of polymers on the basis of structure. Give examples.
 - (d) Define the term 'oriented polymers'.
- 3. Answer any three of the following questions: 5×3=15
 - (a) (i) 'All polymers are macromolecules but all macromolecules are not polymers' Justify the statement.

- (ii) Write the importance of plasticizer in polymer chemistry with an example. 2
- (b) Identify A-E in the following polymeric reactions:

(i) H-C=C-H
$$\frac{\text{Ti}(\text{OBu})_4 / \text{Et}_3\text{Al}}{> 150 \,^{\circ}\text{C}}$$
 A

(ii)
$$H_2C=C-C=CH_2+$$
 Na/Δ B

(iii)
$$H_3C$$
 OCH₃ Benzoyl peroxide Δ

(iv)
$$OH$$
 + CH_2O Base $o-D+p-D$ polymerisation

$$(v)$$
 o-D $\xrightarrow{\text{polymerisation}}$ E

- (c) Briefly discuss the preparation, properties and uses of the following polymers: 2.5×2=5
 - (i) Polyamides
 - (ii) Polyvinyl chloride (PVC)

- (d) Write short note on thermodynamics of polymer solutions. What are two main factors which helps crystallization of polymers?
- Differentiate between copolymerization (e) and homopolymerization. Give one example of each. What is graft and 2+1+2=5 block copolymer?
- Answer any three of the following 10×3=30 questions:
 - What are natural and synthetic (a) polymer. Give examples. How do you explain the functionality of a monomer and how does it affect the polymer formation? Give an account of synthetic criteria of polymer formation. 3+4+3=10
 - What are the basic differences between addition and condensation polymer? How will you distinguish between free radical and ionic polymerization? Write the free radical mechanism for the 3+3+4=10 polymerisation of ethene.
 - Name any two initiators used in anionic (c) polymerization. Describe the polymerization of 2,2-dimethyloxirane by an anionic and cationic mechanism. List the following groups of monomers in order of decreasing ability to undergo anionic polymerization. 2+3+3+2=10

- (ii) CH₂=CHCH₃ CH₂=CHCl CH₂=CHCN
- (d) What is glass transition temperature (T_g) ? Discuss various factors affecting glass transition temperature. Which of the polymers in each pair is expected to have higher T_g and why?
 - (i) polyethylene and polypropylene
 - (ii) poly(but-l-ene) and poly(but-2-ene).

Write a short note on Conducting polymer. 1+3+3=10

(e) Define living polymerization. Mention two benefits of living polymerization in general over conventional non-living polymerizations. Mention two techniques of living radical polymerization. Give an example of block co-polymer that is usually synthesized by living anionic polymerization. 2+3+3+2=10

(f) Why is molecular weight of polymers taken as 'average'? Explain viscometry methods of determining molecular weight of polymers. Why is M_{ν} measured by viscosity method not an absolute molecular weight? Explain the term Polydispersity index. 2+4+2+2=10

OPTION-C

Paper: CHE-HE-5066

(Instrumental Methods of Chemical Analysis)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer **all** the questions as directed: 1×7=7
 - (a) What is the source of visible light used in a modern UV-visible spectrophotometer?
 - (b) The reference compound use in ¹H-NMR spectroscopy is _____.

 (Fill in the blank)
 - (c) Which of the following is used as the source of radiation in atomic absorption spectroscopy?
 - (A) Tungsten lamp
 - (B) Xenon-mercury arc lamp
 - (C) Deuterium lamp
 - (D) Hollow cathode lamp
 (Choose the correct answer)

- (d) Which of the following statements is wrong?
 - (A) A mass spectrometer uses high energy UV radiation.
 - (B) A mass spectrometer does not use a spectrophotometric detector.
 - (C) Mass spectrometry does not always require samples of high purity.
 - (D) A mass spectrum does not show signals due to uncharged radicals.

(e)	Column-1	Column-2
	(a) Mass spectrometry	(i) Deuterium lamp
•	(b) NMR	(ii) Michelson Interferometer
	(c) FT-IR	(iii) Base peak
	(d) UV-visible	(iv) Chemical shift

Choose the correct option for the matching pairs from both the columns:

- (A) (a) \rightarrow (iii); (b) \rightarrow (iv); (c) \rightarrow (ii); (d) \rightarrow (i)
- (B) (a) \rightarrow (iii); (b) \rightarrow (i); (c) \rightarrow (iv); (d) \rightarrow (ii)
- (C) (a) \rightarrow (iv); (b) \rightarrow (iii); (c) \rightarrow (ii); (d) \rightarrow (i)
- (D) (a) \rightarrow (ii); (b) \rightarrow (iii); (c) \rightarrow (iv); (d) \rightarrow (i)

- (f) Which of the following statements is wrong?
 - (A) UV light absorption causes electronic transitions.
 - (B) UV spectra provide information about valence electrons.
 - (C) IR absorption causes transitions between rotational energy levels of a molecule.
 - (D) NMR spectrometers use radiofrequency electromagnetic radiation.
- '(g) Consider the following instrumental methods:
 - (i) IR spectroscopy
 - (ii) UV-visible spectroscopy
 - (iii) Mass spectrometry
 - (iv) Chromatography

Which method(s) can give structural information regarding a molecule?

- (A) (i) and (ii)
- (B) (ii) and (iii)
- (C) (i), (ii) and (iii)
- (D) All of the above

- 2. Answer any four questions: 2×4=8
 - (a) Give two advantages of using tetramethyl silane (TMS) as the reference standard in ¹H-NMR spectroscopy.
 - (b) Mention two requirements of a carrier gas in gas chromatography. Why is O_2 unsuitable as a carrier gas?
 - (c) (i) What quantities are usually displayed in a typical FT-IR spectrum?
 - (ii) Convert 20000 cm^{-1} to nm.

1+1=2

- (d) Two analysts determined the percentage of silver in a coin and reported the following results:
- Analyst 1: 100.00, 99.60, 99.70, 99.10 Analyst 2: 98.80, 98.82, 98.84, 98.81

Inalyst 2: 98.80, 98.82, 98.84, 98.81

If the true value is 100.00, comment on the accuracy and precision of the measurements of both the analysts.

- 3. Answer any three questions: 5×3=15
 - (a) Briefly discuss about the working principle of a double-beam UV-visible spectrometer by using a neat diagram.
 - (b) Discuss the advantages and limitations of instrumental methods in chemical analysis.

- (c) Discuss the methods of sample preparation in IR spectroscopy.
- (d) Briefly discuss about the importance of column chromatography in the separation of mixtures.
- (e) The electronic absorption spectrum of a molecule recorded in a solution phase is typically broad in appearance. Explain using appropriate diagram.
- 4. Answer the following questions: 10×3=30
 - (a) Discuss the principle and instrumentation of atomic absorption spectroscopy (AAS). 5+5=10

Or

- (i) Briefly discuss the principle of NMR spectroscopy. 5
- (ii) What is chemical shift? What are the factors that affect chemical shift? 1+4=5
- (b) Discuss the principle, instrumentation and applications of gas chromatography. 4+4+2=10

Or

Discuss the principle and instrumentation of mass spectrometry.

10

- (c) Answer either (i) to (iii) or (iv) to (vii):
 - (i) Discuss the instrumentation of FT-IR spectroscopy. 5
 - (ii) Discuss the advantages of FT-IR spectrometers over dispersive instruments.
 - (iii) What is fingerprint region in IR spectroscopy?

Or

- (iv) Write down the mathematical form of the Beer-Lambert law and explain the various terms involved.
- (v) Give two important causes of deviations from the Beer-Lambert law.
- (vi) What is the significance of the molar extinction coefficient? 1
- (vii) Radiation of wavelength 280 nm is passed through 1 cm of an aqueous solution of the amino acid tryptophan present at a concentration of 0.50 mol dm⁻³. The light intensity is reduced to 54% of its initial value. Calculate the absorbance and the molar extinction coefficient of tryptophan at 280 nm. What would be the transmittance through a cell of thickness 2 cm? 2+2+1=5