Total number of printed pages-8

C

3 (Sem-5/CBCS) MAT HC1

 (ii)

2021

(Held in 2022)

MATHEMATICS

(Honours) (iv)

Paper : MAT-HC-5016 (Riemann Integration and Metric Spaces) Full Marks : 80 Time : Three hours and T The figures in the margin indicate

full marks for the questions,

1. Answer the following as directed : $1 \times 10 = 10$

- (a) Describe an open ball in the discrete metric space.
- (b) Find the derived set of the sets $(0, 1]$ and [O, l].
- (c) A subset B of a metric space (X, d) is open if and only if

(Choose the correct one) **Contd.**

of closed sats toco ce ma riiw li vident

(d) Which of the following is false ? (i) $\phi^{\circ} = \phi$, $X^{\circ} = X$ (ii) $A \subset B \Rightarrow A^{\circ} \subset B^{\circ}$ (iii) $(A \cap B)^{\circ} = A^{\circ} \cap B^{\circ}$ (iv) $(A \cup B)^{\circ} = A^{\circ} \cup B^{\circ}$ where A, B are subsets of a metric space (X, d) . (Choose the false one) (e) The closure of the subset $F = \left\{1, \frac{1}{2}, \frac{1}{3}, \dots \right\}$ of the real line $\mathbb R$ is $($ i α β $)$ β β and a contract of the contract o $\begin{pmatrix} 1 & 0 \\ 0 & F \end{pmatrix}$ (iii) $F \cup \{0\}$ Al farmer (*iv*) $F - \{0\}$ (Choose the correct one)

(f) In a metric space an arbitrary union of closed sets need not be closed. Justify it with an example.

3 (Sem-5/CBCS) MAT HC1/G 2

(g) If A is a subset of a metric space (X, d) , then which one is true ?

(i)
$$
d(A) = d(\overline{A})
$$

\n(ii) $d(A) \neq d(\overline{A})$
\n(iii) $d(A) > d(\overline{A})$
\n(iv) $d(A) < d(\overline{A})$

J. then

e Show

Choose the true one)

i (K, d) dan (K, d)

ladi wöder all oper

 (d) Let $f:[a,]$

(h) When is an improper Riemann integral said to be convergent ?

(i) Evaluate
$$
\int_{0}^{\infty} e^{-x} dx
$$
 if it exists

(i) Show that $\Gamma(1) = 1$

2. Answer the following questions : 2x5=10

- (a) Let F be a subset of a metric space (X, d) . Prove that the set of limit points of F is a closed subset of (X, d) .
- (b) If F_1 and F_2 are two subsets of a metric space (X, d) , then $F_1 \cap F_2 = F_1 \cap F_2$. Justify whether it is false or true.

3 (Sem-5/CBCS) MAT HC 1/G 3 Contd.

- (c) Let (X, d_X) and (Y, d_Y) be metric spaces and $f: X \to Y$. If for all subsets A of X, $f(\overline{A}) \subseteq \overline{f(A)}$, then show that f is continuous on X .
- (d) Let $f:[a, b] \to \mathbb{R}$ be integrable. Show. that $|f|$ is integrable.
- (e) Show that the function $f:[a, b] \to \mathbb{R}$ defined by $f(x)=c$ for all $x \in [a, b]$ is integrable with its integral $c(b-a)$.
- 3. Answer *any four* parts : $5 \times 4 = 20$
	- (a) Define a complete metric space. Show that the metric space $X = \mathbb{R}^n$ with the metric given by

$$
d_p(x, y) = (\sum |x_i - y_i|^p)^{\frac{1}{p}}, \ p \ge 1
$$

where $x = (x_1, x_2, ..., x_n)$ and

 $y = (y_1, y_2, ..., y_n)$ are in \mathbb{R}^n , is a complete metric space. $1+4=5$

3 (Sem-5/CBCS) MAT HC1/G 4

(b) Let (X, d_X) and (Y, d_Y) be metric spaces. Prove that a mapping $f: X \to Y$ is continuous on X if and only if $f^{-1}(G)$ is open in X for all open subsets G of Y . \cdot 5

(c) Prove that if the metric space (X, d) is disconnected, then there exists a continuous mapping of (X, d) onto the discrete two-element space (X_0, d_0) . 5

- (d) Let $f: [a, b] \to \mathbb{R}$ be a continuous function. Prove that f is integrable. 5
	- (e) Discuss the convergence of the ihtegral $\int_{-\pi}^{\infty} \frac{1}{\pi P} dx$ for various values of p. 5
- (f) Show that for $a > -1$,

$$
S_n = \frac{1^n + 2^n + \dots + n^n}{n^{1+a}} \to \frac{1}{1+a}.
$$

3 (Sem-5/CBCS) MAT HC 1/G 5

5

4. Answer any four parts : $10\times4=40$ (a) (i) Let (X, d) be a metric space. Define $d: X \times X \to \mathbb{R}$ by nego lis tol X $d'(x,y) = \frac{d(x,y)}{1+d(x,y)}$ for all a ei (b. X) shows $x, y \in X$. Prove that d' is a metric $\frac{1}{\sin \theta}$ on X. anti other (b. Also show that d and d' are (X_0, d_0) . equivalent metrices on X. $4 + 2 = 6$ $\frac{1}{2}$ Prove that a convergent sequence in a metric space is a Cauchy integrable. sequence. 4 (b) (i) Let (X, d) be a metric space and F be a subset of X. Prove that F is closed in X if and only if F^c is open. 5 (ii) If (Y, d_Y) is a subspace of a metric space (X, d) , then show that a subset Z of Y is open in Y if and only if there exists an open set $G \subset X$ such that $Z = G \cap Y$. 5

3 (Sem-5/CBCS) MAT HC 1/G 6

3 (Smn-5/CBCS) MAT HE I/C

(c) Prove that a metric space (X, d) is complete if and only if for every nested sequence ${F_n}_{n>1}$ of non-empty closed subsets of X such that $d(F_n) \to 0$ as

> $n \to \infty$, the intersection $\bigcap_{n=1}^{\infty} F_n$ contains one and only one point. 10

- (d) (i) Prove that in a metric space (X, d) , each open ball is an open set. 4 and 4 and 4
	- (ii) Let (X, d_X) and (Y, d_Y) be metric spaces and $A \subseteq X$. Prove that a function $f : A \rightarrow Y$ is continuous at $a \in A$ if and only if whenever a sequence $\{x_n\}$ in A converges to a, the sequence $\{f(x_n)\}$ converges to $f(a)$. 6
-

(e) (i) Define uniformly continuous mapping in a metric space. Give an example to show that a continuous mapping need not be uniformly continuous. 1+4=5

(ii) Prove that the image of a Cauchy sequence under a uniformly bbienn vn continuous mapping is itself a beachy sequence.

- (f) Let (\mathbb{R}, d) be the space of real numbers with the usual metric. Prove that a subset $I \subset \mathbb{R}$ is connected if \Box and only if *I* is an interval. \Box 10
- (g) Let $f:[a,b]\to\mathbb{R}$ be a bounded f function. Show that f is integrable if and only if it is Riemann integrable. 10
- be metric (h) (i) State and prove first fundamental theorem of calculus. Using it **show** that

$$
\int_{0}^{a} f(x)dx = \frac{a^4}{4} \text{ for } f(x) = x^3.
$$

 $1+3+2=6$

(ii) Let f be continuous on $[a, b]$. Prove that there exists $c \in [a, b]$

such that
$$
\frac{1}{b-a} \int_{a}^{b} f(x) dx = f(c)
$$

 $\overline{4}$

3 (Sem-5/CBCS) MAT HC 1/G 8 4000

ad jon be 2-A+J