3 (Sem-4/CBCS) PHY HC3

2022

PHYSICS

(Honours)

Paper: PHY-HC-4036

(Analog Systems and Applications)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer **any seven** questions from the following: 1×7=7
 - (i) Resistivity of a semiconductor _____ with increase in temperature.

 (Fill in the blank)
 - (ii) Potential barrier across a p-n junction diode is due to accumulation of
 - (a) electrons
 - (b) opposite ions
 - (c) space charges
 - (d) holes (Choose the correct option)

- (iii) Class-C amplifier produces the least efficiency but exhibits good linearity.

 (Write True or False)
- (iv) RC-coupled amplifier is used for
 - (a) current amplification
 - (b) power amplification
 - (c) voltage amplification
 - (d) None of the above (Choose the correct option)
- (v) In a transistor amplifier, lower value of the stability factor indicates the better stability of the quiescent point.

 (Write True or False)
- (vi) Bandwidth of an amplifier increases by employing
 - (a) positive feedback
- (b) all types of negative feedback
 - (c) current-series positive feedback
 - (d) voltage-series negative feedback (Choose the correct option)
 - (vii) In an op-amp the input stage is usually a _____ amplifier.

(Fill in the blank)

- (viii) If a sine wave is applied to the input of an op-amp differentiator circuit, the output would be a
- (a) cosine wave
 - (b) triangular wave
- square wave
- (d) pulse (Choose the correct option)
 - (ix) Wien bridge oscillator is an audio frequency sine wave oscillator of high ______. (Fill in the blank)
- (x) Resolution of a DAC is equal to the weight of
- (a) LSB
 - (b) MSB
- (c) 1V
 - (d) 15V (Choose the correct option)
- 2. Answer any four questions: 2×4=8
 - (i) What is ripple factor? What is the value of ripple factor of a half-wave rectifier?

- (ii) The current amplification factor of a transistor in common emitter configuration is $\beta = 30$. Calculate collector current I_C and emitter current I_E if the base current is $I_B = 10 \ \mu A$.
- (iii) What is positive feedback? Why is positive feedback most commonly used in oscillator?
- (iv) Define CMRR of an op-amp. Express it in dB form.
 - (v) In a non-inverting op-amp with $R_1 = 1k\Omega$ and $R_F = 100k\Omega$, find the closed-loop voltage gain of the op-amp.
 - (vi) Draw the circuit diagram of a two-stage RC-coupled transistor CE amplifier.
- (vii) Write the applications of Hartley and Colpitt oscillators.
- (viii) What are the advantages of R-2R ladder DAC over weighted-resistor DAC?

- 3. Answer any three questions: 5×3=15
 - (i) A full-wave rectifier with an applied voltage of 400 sin ωt is centre-tapped with a load resistance of 2kΩ. If the resistance of the diodes are 100 Ω each, determine (a) peak value of current,
 (b) dc value of output current in the load, and (c) rectification efficiency of the rectifier.
 - (ii) What do you mean by class A, class B and class C amplifiers? Why is the efficiency of class B amplifier more than that of class A amplifier? 3+2=5
 - (iii) Derive the expression for the voltage gain of RC-coupled transistor amplifier for mid-frequency range.
 - (iv) Explain how an op-amp can be used as (i) a differentiator, and (ii) an integrator.
 - (v) Find the operating frequency of a Hartley oscillator if $L_1 = 10 \,\mu\text{H}$, mutual inductance between the coils $M = 15 \,\mu\text{H}$, $L_2 = 2 \,m\text{H}$ and $C = 10 \,\mu\text{F}$. Find also the hFE value for sustained oscillations.

- (vi) Define common-base current amplification factor (α) and common emitter current amplification factor (β). Derive the relation between α and β .

 2+3=5
- (vii) The total linear distortion of an amplifier is reduced from 10% to 2% when 4% negative feedback is applied. Find voltage gain of the amplifier without feedback and with feedback.
 - (viii) Write short notes on:
 - (a) Photodiode
- (b) Light emitting diode
- 4. Answer any three questions: 10×3=30
 - (i) What are drift current and diffusion current in a semiconductor? How are the potential barrier and depletion region formed in a p-n junction? Derive the p-n diode equation for determining the current through the junction.

2+2+6=10

- (ii) Distinguish between Zener diode and ordinary p-n junction diode. Explain the action of Zener diode as voltage regulator with circuit diagram. Draw the V-I characteristic curve of a Zener diode. 2+6+2=10
- (iii) Draw the h-parameter equivalent circuit of a CE transistor amplifier and derive the expressions for its current gain, voltage gain, input impedance and power gain.

 2+2+2+2=10
- (iv) What is transistor biasing? Discuss the fixed bias and self bias methods of transistor biasing. Calculate the stability factor of a fixed bias method. What are the disadvantages of a fixed bias method? 1+(3+3)+2+1=10
- (v) What is negative feedback? Discuss the effect of negative feedback on (a) input impedance, (b) output impedance, (c) non-linear distortion, and (d) noise of an amplifier. 2+(2+2+2)=10
- (vi) Draw the circuit diagram of an RC-phase shift oscillator and explain its operation. Find an expression for the frequency of oscillations and the condition of sustained oscillations.

op-amps? With the help of a circuit diagram describe the inverting op-amp with feedback. Derive the expression for the closed loop voltage gain of this amplifier. What do you mean by virtual ground in this op-amp?

2+3+3+2=10

(viii) With the help of a neat diagram explain the working of weighted registor DAC. What are its advantages and disadvantages? Write any two major applications of D/A converters.

4+(2+2)+2=10

impedance (b) output impedance,