3 (Sem-5/CBCS) MAT HC 1 (N/O)

2022

MATHEMATICS

(Honours)

Paper: MAT-HC-5016

(For New Syllabus)

(Complex Analysis)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer **any seven** questions from the following: $1 \times 7 = 7$
 - (a) Describe the domain of definition of the function $f(z) = \frac{z}{z + \overline{z}}$.
 - (b) What is the multiplicative inverse of a non-zero complex number z = (x, y)?

- (c) Verify that (3, 1) (3, -1) $(\frac{1}{5}, \frac{1}{10}) = (2, 1)$.
- (d) Determine the accumulation points of the set $Z_n = \frac{i}{n} (n = 1, 2, 3, ...)$.
- (e) Write the Cauchy-Riemann equations for a function f(z) = u + iv.
- (f) When a function f is said to be analytic at a point?
- (g) Determine the singular points of the function $f(z) = \frac{2z+1}{z(z^2+1)}$.
- (h) $exp(2\pm 3\pi i)$ is
 - (i) $-e^2$
 - (ii) e^2
 - (iii) 2e
 - (iv) -2e (Choose the correct answer)

- (i) The value of log (-1) is
 - (i) C
 - (ii) 2nπi
 - (iii) πi
 - (iv) $-\pi i$ (Choose the correct answer)
- (i) If z = x + iy, then $\sin z$ is
 - (i) $\sin x \cos hy + i \cos x \sin hy$
 - (ii) $\cos x \cos hy i \sin x \sin hy$
 - (iii) $\cos x \sin hy + i \sin x \cos hy$
 - (iv) $\sin x \sin hy i \cos x \cos hy$ (Choose the correct answer)
- (k) If $\cos z = 0$, then

(i)
$$z = n \pi, (n = 0, \pm 1, \pm 2,...)$$

(ii)
$$z = \frac{\pi}{2} + n \pi$$
, $(n = 0, \pm 1, \pm 2,...)$

(iii)
$$z = 2n \pi, (n = 0, \pm 1, \pm 2, ...)$$

3

(iv)
$$z = \frac{\pi}{2} + 2n \pi, (n = 0, \pm 1, \pm 2, ...)$$

(1) If z_0 is a point in the z-plane, then $\lim_{z\to\infty} f(z) = \infty \text{ if }$

(i)
$$\lim_{z\to 0} \frac{1}{f(z)} = \infty$$

(ii)
$$\lim_{z \to 0} f\left(\frac{1}{z}\right) = 0$$

(iii)
$$\lim_{z \to 0} \frac{1}{f(z)} = 0$$

(iv)
$$\lim_{z \to 0} \frac{1}{f\left(\frac{1}{z}\right)} = 0$$

- 2. Answer **any four** questions from the following: 2×4=8
 - (a) Reduce the quantity $\frac{5i}{(1-i)(2-i)(3-i)}$ to a real number.
 - (b) Define a connected set and give one example.

- (c) Find all values of z such that exp(2z-1)=1.
- (d) Show that $\log(i^3) \neq 3\log i$.
- (e) Show that $2\sin(z_1 + z_2)\sin(z_1 z_2) = \cos 2z_2 \cos 2z_1$
- (f) If z_0 and w_0 are points in the z plane and w plane respectively, then prove that $\lim_{z \to z_0} f(z) = \infty$ if and only if

$$\lim_{z\to z_0}\frac{1}{f(z)}=0.$$

- (g) State the Cauchy integral formula. Find $\frac{1}{2\pi i} \int_C \frac{1}{z-z_0} dz \quad \text{if} \quad z_0 \quad \text{is any point}$ interior to simple closed contour C.
- (h) Show that $\int_{0}^{\frac{\pi}{6}} e^{i2t} dt = \frac{\sqrt{3}}{4} + \frac{i}{4}$.

- 3. Answer **any three** questions from the following: $5 \times 3 = 15$
 - (a) (i) If a and b are complex constants, use definition of limit to show that $\lim_{z \to z_0} (az + b) = az_0 + b.$ 2
 - (ii) Show that

$$\lim_{z \to 0} \left(\frac{z}{\overline{z}}\right)^2 \text{ does not exist.} \qquad 3$$

- (b) Suppose that $\lim_{z \to z_0} f(z) = w_0$ and $\lim_{z \to z_0} F(z) = W_0.$ Prove that $\lim_{z \to z_0} \left[f(z) F(z) \right] = w_0 W_0$.
- (c) (i) Show that for the function $f(z) = \overline{z}$, f'(z) does not exist anywhere.
 - (ii) Show that $\lim_{z \to \infty} \frac{4z^2}{(z-1)^2} = 4$. 2

- (d) (i) Show that the function $f(z) = \exp \overline{z} \text{ is not analytic}$ anywhere.
 - (ii) Find all roots of the equation

$$\log z = i\frac{\pi}{2}.$$

- (e) If a function f is analytic at all points interior to and on a simple closed contour C, then prove that $\int_C f(z)dz = 0.$
- (f) Evaluate:

21/2+21/2=5

(i)
$$\int_C \frac{e^{-z}}{z - (\pi i/2)} dz$$

(ii)
$$\int_C \frac{z}{2z+1} dz$$

where *C* denotes the positively oriented boundary of the square whose sides lie along the lines $x = \pm 2$ and $y = \pm 2$.

- (g) Prove that any polynomial $P(z) = a_0 + a_1 z + a_2 z^2 + ... + a_n z^n (a_n \neq 0)$ of degree $n(n \geq 1)$ has at least one zero.
- (h) Find the Laurent series that represents the function $f(z) = z^2 \sin\left(\frac{1}{z^2}\right)$ in the domain $0 < |z| < \infty$.
- 4. Answer **any three** questions from the following: 10×3=30
 - (a) (i) If a function f is continuous throughout a region R that is both closed and bounded, then prove that there exists a non-negative real number μ such that $|f(z)| \le \mu$ for all points z in R, where equality holds for at least one such z.

- Let a function (ii) f(z) = u(x, y) + iv(x, y) be analytic throughout a given domain D. If |f(z)| is constant throughout D, then prove that f(z) must be constant there too. 3
- (iii) Show that the function $f(z) = \sin x \cos hy + i \cos x \sin hy$ 3 is entire.
- (b) (i) Suppose that $f(z_0) = g(z_0) = 0$ and that $f'(z_0)$ $g'(z_0)$ exist, where $g'(z_0) \neq 0$. Use definition of derivative to show that

$$\lim_{z \to z_0} \frac{f(z)}{g(z)} = \frac{f'(z_0)}{g'(z_0)}.$$
 3

- (ii) Show that f'(z) does not exist at any point if $f(z) = 2x + ixy^2$.
- If a function f is analytic at a given (iii) point, then prove that derivatives of all orders are analytic there too. 4

(c) Let the function f(z) = u(x, y) + iv(x, y) be defined throughout some ε -neighbourhood of a point $z_0 = x_0 + iy_0$. If u_x, u_y, v_x, v_y exist everywhere in the neighbourhood, and these partial derivatives are continuous at (x_0, y_0) and satisfy the Cauchy-Riemann equations at (x_0, y_0) , then prove that $f'(z_0)$ exist and $f'(z_0) = u_x + iv_x$ where the right hand side is to be evaluated at (x_0, y_0) .

Use it to show that for the function $f(z) = e^{-x}$. e^{-y} , f''(z) exists everywhere and f''(z) = f(z). 6+4=10

(d) (i) Prove that the existence of the derivative of a function at a point implies the continuity of the function at that point.

With the help of an example show that the continuity of a function at a point does not imply the existence of derivative there.

3+5=8

(ii) Find
$$f'(z)$$
 if

$$f(z) = \frac{z-1}{2z+1} \left(z \neq -\frac{1}{2} \right).$$

- (e) (i) Prove that $\int_C \frac{dz}{z} = \pi i$ where C is the right-hand half $z = 2e^{i\theta}$ $\left(-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}\right) \text{ of the circle } |z| = 2$ from z = -2i to z = 2i.
 - (ii) If a function f is analytic everywhere inside and on a simple closed contour C, taken in the positive sense, then prove that

$$f'(z) = \frac{1}{2\pi i} \int_C \frac{f(s)}{(s-z)^2} ds$$
 where s

denotes points on C and z is interior to C.

(f) (i) Evaluate $I = \int_C z^{a-1} dz$

where C is the positively oriented circle $z = Re^{i\theta} \left(-\pi \le \theta \le \pi\right)$ about the origin and a denote any non-zero real number.

If a is a non-zero integer n, then what is the value of $\int_C z^{n-1} dz$?

4+1=5

(ii) Let C denote a contour of length L, and suppose that a function f(z) is piecewise continuous on C. If μ is a non-negative constant such that $|f(z)| \le \mu$ for all point z on C at which f(z) is defined, then prove

that
$$\left| \int_C f(z) dz \right| \leq \mu L$$
.

Use it to show that $\left| \int_{C} \frac{dz}{z^2 - 1} \right| \le \frac{\pi}{3}$ where C is the arc of the circle |z| = 2 from z = 2 to z = 2i that lies in the Ist quadrant. 3+2=5

- (g) (i) Apply the Cauchy-Goursat theorem to show that $\int_C f(z) = 0$ when the contour C is the unit circle |z| = 1, in either direction and $f(z) = ze^{-z}$.
 - (ii) If C is the positively oriented unit circle |z|=1 and f(z)=exp(2z) find $\int_C \frac{f(z)}{z^4} dz$.
 - (iii) Let z_0 be any point interior to a positively oriented simple closed curve C. Show that

$$\int_{C} \frac{dz}{(z-z_0)^{n+1}} = 0, (n = 1, 2, ...).$$
 3

(h) (i) Suppose that $z_n = x_n + iy_n$, (n = 1, 2, ...) and z = x + iy. Prove that $\lim_{n \to \infty} z_n = z$ if and only if

$$\lim_{n\to\infty} x_n = x \text{ and } \lim_{n\to\infty} y_n = y.$$
 5

(ii) Show that

$$z^{2}e^{3z} = \sum_{n=2}^{\infty} \frac{3^{n-2}}{(n-2)!} z^{n} (|z| < \infty)$$

(For Old Syllabus)

(Riemann Integration and Metric Spaces)

Full Marks: 80

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following questions: 1×10=10
 - (a) Describe an open ball on the real line \mathbb{R} for the usual metric d.
 - (b) Find the limit point of the set

$$\left\{1, \frac{1}{2}, \frac{1}{3}, ..., \frac{1}{n}, ...\right\}$$
.

- (c) Define Cauchy sequence in a metric space (X, d).
- (d) Let A and B be two subsets of a metric space (X, d). Then

(i)
$$(A \cap B)^0 = A^0 \cap B^0$$

(ii)
$$(A \cup B)^0 = A^0 \cup B^0$$

(iii)
$$(A \cap B)' = A' \cap B'$$

(iv)
$$(A \cup B)' = A' \cup B'$$

where A^0 denotes interior of A A' denotes derived set of A(Choose the correct answer)

- (e) In a complete metric space
 - (i) every sequence is bounded
 - (ii) every bounded sequence is convergent
 - (iii) every convergent sequence is bounded
 - (iv) every Cauchy sequence is convergent
 (Choose the correct answer)
- (f) Let $\{F_n\}$ be a decreasing sequence of closed subsets of a complete metric space and $d(F_n) \to 0$ as $n \to \infty$. Then

(i)
$$\bigcap_{n=1}^{\infty} F_n = \phi$$

- (ii) $\bigcap_{n=1}^{\infty} F_n$ contains at least one point
- (iii) $\bigcap_{n=1}^{\infty} F_n$ contains exactly one point

(iv)
$$d\left(\bigcap_{n=1}^{\infty}F_{n}\right)>0$$

(g) Let (X, d) and (Y, ρ) be metric spaces and $A \subset X$. Let $f: X \to Y$ be continuous on X. Then

(i)
$$f(A) = f(\overline{A})$$

(ii)
$$f(\overline{A}) \subset \overline{f(A)}$$

(iii)
$$\overline{f(A)} \subset f(\overline{A})$$

(iv)
$$f(A) = f(A^0)$$

- (h) What is meant by partition P of an interval [a, b]?
- (i) Prove that $\alpha + 1 = \alpha \alpha$
- (j) Define the upper and the lower Darboux sums of a function $f:[a,b] \to \mathbb{R}$ with respect to a partition P.
- 2. Answer the following questions: $2 \times 5 = 10$
 - (a) Prove that in a discrete metric space every singleton set is open.

(b) For any two subsets F_1 and F_2 of a metric space (X, d), prove that

$$\overline{\left(F_1 \cup F_2\right)} = \overline{F_1} \cup \overline{F_2}$$

- (c) Let (X, d_X) and (Y, d_Y) be metric spaces and let $f: X \to Y$. Then if f is continuous on X, prove that $\overline{f^{-1}(B)} \subset f^{-1}\left(\overline{B}\right) \text{ for all subsets } B \text{ of } Y.$
- (d) Find L(f, P) and U(f, P) for a constant function $f: [a, b] \to \mathbb{R}$.
- (e) Examine the existence of improper integral $\int_{0}^{1} \frac{1}{\sqrt{x}} dx$.
- 3. Answer any four parts:

 $5 \times 4 = 20$

(a) Let d be a metric on the non-empty set X. Prove that the function d' defined by $d'(x, y) = min\{1, d(x, y)\}$ where $x, y \in X$ is a metric on X. State whether d' is bounded or not.

4+1=5

- (b) In a metric space (X, d), prove that every closed sphere is a closed set.
- (c) Prove that if a Cauchy sequence of points in a metric space (X, d) contains a convergent subsequence, then the sequence also converges to the same limit as the subsequence.
- (d) Let (X, d) be a metric space and let $\{Y_{\lambda}, \lambda \in l\}$ be a family of connected sets in (X, d) having a non-empty intersection. Then prove that $Y = \bigcup_{\lambda \in l} Y_{\lambda}$ is connected.
- (e) Consider the function $f:[0,1] \to \mathbb{R}$ defined by $f(x) = \begin{cases} 1 & \text{if } x \in Q \\ 0 & \text{otherwise} \end{cases}$ Prove that f is not integrable on [0,1].
- (f) Let $f:[a,b] \to R$ be bounded and monotone. Prove that f is integrable.

4. Answer any four parts:

 $10 \times 4 = 40$

(a) (i) Define a metric space.

Let

$$X = \mathbb{R}^n = \big\{ x = \big(x_1, \, x_2, \, \dots \, x_n \big), \, x_i \in \mathbb{R}, \, 1 \leq i \leq n \big\}$$
 be the set of all real *n*-tuples. For $x = \big(x_1, \, x_2, \dots, \, x_n \big)$ and
$$y = \big(y_1, \, y_2, \dots, \, y_n \big) \text{ in } \mathbb{R}^n \text{ define}$$

$$d(x, y) = \left(\sum_{i=1}^{n} (x_i - y_i)^2\right)^{1/2}$$

Prove that (\mathbb{R}^n, d) is a metric space. 2+4=6

- (ii) Prove that in a metric space (X, d), a finite intersection of open sets is open.
- (b) Let Y be a subspace of a metric space (X, d). Prove the following: 5+5=10
 - (i) Every subset of Y that is open in Y is also open in X if and only if Y is open in X.

- (ii) Every subset of Y that is closed in Y is also closed in X if and only if Y is closed in X.
- (c) (i) Prove that the function $f:[0,1] \to \mathbb{R}$ defined by $f(x)=x^2$ is uniformly continuous. Further prove that the function will not be uniformly continuous if the domain is \mathbb{R} . 3+3=6
 - (ii) Let (X, d_X) , (Y, d_Y) and (Z, d_Z) be metric spaces and let $f: X \to Y$ and $g: Y \to Z$ be continuous. Prove that the composition $g \circ f$ is a continuous map of X into Z.
- (d) When a metric space is said to be disconnected?
 Prove that a metric space (X, d) is disconnected if and only if there exists a non-empty proper subset of X which is both open and closed in (X, d).

2+8=10

(e) (i) Show that the metric space (X, d) where X denotes the space of all sequences $x = (x_1, x_2, x_3, ..., x_n)$ of real numbers for which

$$\left(\sum_{k=1}^{\infty} |x_k|^p\right)^{\frac{1}{p}} < \infty \ (p \ge 1) \text{ and } d \text{ is the } d = 0$$

metric given by

$$d_p(x, y) = \left(\sum_{k=1}^{\infty} (x_k - y_k)^p\right)^{1/p}, x, y \in X$$

is a complete metric space.

(ii) Let X be any non-empty set and let d be defined by

$$d(x, y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}$$

Show that (X, d) is a complete metric space.

- (f) Prove that a bounded function $f:[a,b] \to R$ is integrable if and only if for each $\varepsilon > 0$, there exists a partition P of [a,b] such that $U(P,f)-L(P,f)<\varepsilon$.
- (g) Let $f:[0,1]\to\mathbb{R}$ be continuous. Let $C_i\in\left[\frac{i-1}{n},\frac{i}{n}\right],\,n\in N\,.$ Then prove that

$$\lim_{n\to\infty}\sum_{i=1}^n f(C_i) = \int_0^1 f(x) dx.$$

Using it, prove that
$$\lim_{n\to\infty} \sum_{k=1}^n \frac{n}{k^2 + n^2} = \frac{\pi}{4}$$
.

(h) (i) Prove that a mapping $f: X \to Y$ is continuous on X if and only if $f^{-1}(F)$ is closed in X for all closed subsets F of Y.

(ii) Let f and g be continuous on [a, b]. Also assume that g does not change sign on [a, b]. Then prove that for some $c \in [a, b]$ we have

$$\int_{a}^{b} f(x) g(x) dx = f(c) \int_{a}^{b} g(x) dx.$$