## 3 (Sem-4/CBCS) PHY HC1

## 2023

## **PHYSICS**

(Honours Core)

Paper: PHY-HC-4016

(Mathematical Physics-III)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Give short answers to the following questions: 1×7=7
  - (a) Find the principal value of  $i^i$ .
  - (b) Define a multiply connected region in complex plane.
  - (c) Find the value of  $L^{-1}\left\{\frac{1}{s(s-a)}\right\}$  for s > a.

- (d) What does the equation |z-i|=2 represent?
  - (e) State convolution theorem of Fourier transform.
  - (f) Write the transformation rule for a covariant tensor of rank two.
  - (g) Plot the number  $e^{(1+i\frac{\pi}{4})}$ .
- 2. Answer the following questions: 2×4=8
  - (a) Define simple pole and essential singularity.
    - (b) Establish the shifting property of Fourier transform.
    - (c) Find inverse Laplace transform of  $t^{-\frac{1}{2}}$ .

- (d) Show that the number of independent components of a skew-symmetric tensor of rank 2 in n-dimensional space is  $\frac{n(n-1)}{2}$ .
- 3. Answer any three questions of the following:  $5 \times 3 = 15$ 
  - Check the analyticity and hence find (a) derivative of the function  $f(z) = \sin z$ . 3+2=5
  - (b) Find the value of the integral

$$\int_{0}^{1+i} (x-y-ix^{2}) dz$$
 along real axis from

z=0 to z=1 and then along the line parallel to imaginary axis from z=1 to z=1+i.

(c) Find the Fourier sine transform of a function defined by

$$f(t) = \begin{cases} \cos \infty t, & 0 \le t \le \frac{\pi}{\infty} \\ 0, & t > \frac{\pi}{\infty} \end{cases}$$

(d) Evaluate:

$$L^{-1}\left\{\frac{\left(s+1\right)}{s^{2}\left(s+2\right)^{3}}\right\}$$

(e) Define Levi-Civita symbol in three dimensional space. Show that

$$(\vec{A} \times \vec{B})_i = \varepsilon_{ijk} \ A_j \ B_k$$
 2+3=5

- 4. Answer the following questions: (any three) 10×3=30
  - (a) (i) Prove Cauchy-Riemann conditions for analytical functions. What is the sufficient condition for a function to be analytic? 4+1=5

- (ii) Show that  $|z_1 + z_2| \le |z_1| + |z_2|$
- (iii) Give Laurent series expansion for function f(z).
- (i) What are symmetric (b) antisymmetric tensors? Show that every tensor can be expressed as the sum of two tensors, one of which is symmetric and the other antisymmetric in a pair of covarient or contravarient indices. 2+3=5
  - What is Kronecker delta? Prove (ii) that Kronecker delta is a mixed tensor of second rank. 1+4=5
- (i) Define Laplace transform of a (c) function F(t). Show that

$$L(1) = \frac{1}{s}$$
,  $s > 0$  and

$$L(e^{kt}) = \frac{1}{s-k}, s > k$$
 1+2+2=5

3

(ii) Find the inverse Laplace transform of

$$\frac{6}{2s-3} - \frac{3+4s}{9s^2-16} + \frac{8-6s}{16s^2+9}$$

(d) Find the Fourier transform of

$$f(x) = \begin{cases} 1 - x^2, & |x| \le 1 \\ 0 & |x| > 1 \end{cases}$$

Hence, evaluate:

$$\int_{0}^{\infty} \frac{x \cos x - \sin x}{x^3} \cos \frac{x}{2} dx$$

(e) Evaluate any two of the following integrals: 5×2=10

(i) 
$$\int_{-\infty}^{+\infty} \frac{\sin x}{x} \ dx$$

(ii) 
$$\int_0^\infty \frac{dx}{x^2 + 1}$$

(iii) 
$$\int_{0}^{2\pi} \frac{d\theta}{5 + 4\cos\theta}$$

(f) (i) The Laplace transform of  $\sin 3t = \frac{3}{s^2 + 9}$  and the Laplace transform of  $\cos 5t = \frac{s}{s^2 + 25}$ .

Find the Laplace transform of  $5 \sin 3t + 3 \cos 5t$  using linearity property of Laplace transform. 5

(ii) Find the inverse Laplace transform of  $4s+5/(s-1)^2(s-2)$ . 5