Total number of printed pages-8

3 (Sem-4/CBCS) MAT HC3

2023

MATHEMATICS

(Honours Core)

Paper : MAT-HC-4036

(Ring Theory)

Full Marks: 80

Time : Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following questions : 1×10=10
 - (a) Give an example of an infinite noncommutative ring that does not have a unity.
 - (b) Define an integral domain.
 - (c) What is the characteristic of the ring of 2×2 matrices over integers?
 - (d) In an integral domain, if $a \neq 0$ and ab = ac, then prove that b = c.

Contd.

- (e) Show that $2Z \cup 3Z$ is not a subring of Z.
- (f) Prove that the correspondence $x \rightarrow 5x$ from Z_5 to Z_{10} does not preserve addition.
- (g) Characteristic of every field is
 - (i) 0
 - (ii) an integer
 - (iii) either 0 or prime
 - (iv) either 0 or not prime (Choose the correct option)
- (h) Which of the following is not an integral domain?
 - (i) Z[x]
 - (ii) $\left\{a+b\sqrt{2}: a, b\in Z\right\}$
 - (iii) Z_3
 - (iv) Z_6

(Choose the correct option)

3 (Sem-4/CBCS) MAT HC 3/G 2

- (c) Prove that the ring of integers Z is a principal ideal domain.
- (d) Let φ be a homomorphism from a ring R to a ring S. If A is a subring of R and B is an ideal of S, prove that
 - (i) $\phi(A) = \{\phi(a) | a \in A\}$ is a subring of S.
 - (ii) $\phi^{-1}(B) = \{x \in R | \phi(x) \in B\}$ is an ideal of *R*. $2\frac{1}{2}+2\frac{1}{2}=5$
- (e) Let F be a field, $a \in F$ and $f(x) \in F[x]$. Prove that a is a zero of f(x) if and only if x-a is a factor of f(x).
- (f) Let F be a field, I a nonzero ideal in F[x], and g(x) an element of F(x). Show that $I = \langle g(x) \rangle$ if and only if g(x) is a nonzero polynomial of minimum degree in I.

Answer either (a) and (b) or (c) and (d) of the following questions : 10×4=40

4. (a) Prove that a finite integral domain is a field. Hence show that for every prime p, Z_p , the ring of integers modulo p, is a field. 4+2=6

3 (Sem-4/CBCS) MAT HC3/G 5

Contd.

- (b) Prove that the only ideals of a field are $\{0\}$ and F itself.
- (c) Show that the ring of integers is an Euclidean domain.
- (d) If R is a commutative ring with unity and A is an ideal of R, show that $\frac{R}{A}$ is a commutative ring with unity.
- (e) Let f(x) = x³ + 2x + 4 and g(x) = 3x + 2
 in Z₅ [x]. Determine the quotient and remainder upon dividing f(x) by g(x).
- 3. Answer **any four** questions of the following : 5×4=20
 - (a) Prove that $Z\left[\sqrt{2}\right] = \left\{a + b\sqrt{2} : a, b \in Z\right\}$ is a ring under the ordinary addition and multiplication of real numbers.
 - (b) (i) If I is an ideal of a ring R such that 1 belongs to I, then show that $I = R \cdot$
 - (ii) Let R be a ring and $a \in R$. Show that $S = \{r \in R | ra = 0\}$ is an ideal of R. 2+3=5

3 (Sem-4/CBCS) MAT HC3/G 4

- (c) Prove that the ring of integers Z is a principal ideal domain.
- (d) Let φ be a homomorphism from a ring R to a ring S. If A is a subring of R and B is an ideal of S, prove that
 - (i) $\phi(A) = \{\phi(a) \mid a \in A\}$ is a subring of S.
 - (ii) $\phi^{-1}(B) = \{x \in R | \phi(x) \in B\}$ is an ideal of *R*. $2^{\frac{1}{2}+2^{\frac{1}{2}}=5}$
- (e) Let F be a field, $a \in F$ and $f(x) \in F[x]$. Prove that a is a zero of f(x) if and only if x-a is a factor of f(x).
- (f) Let F be a field, I a nonzero ideal in F[x], and g(x) an element of F(x). Show that $I = \langle g(x) \rangle$ if and only if g(x) is a nonzero polynomial of minimum degree in I.

Answer either (a) and (b) or (c) and (d) of the following questions : 10×4=40

4. (a) Prove that a finite integral domain is a field. Hence show that for every prime p, Z_p , the ring of integers modulo p, is a field. 4+2=6

3 (Sem-4/CBCS) MAT HC3/G 5

Contd.

(b) Show that
$$\frac{R[x]}{\langle x^2+1 \rangle}$$
 is a field. 4

OR

- (c) Prove that every field is an integral domain. Is the converse true? Justify with an example.
 2+1=3
- (d) Define prime ideal and maximal ideal of a ring. Show that \$\langle x \rangle\$ is a prime ideal of \$Z[x]\$ but not a maximal ideal of it.
- 5. (a) Let ϕ be a homomorphism from a ring R to a ring S. Prove that ϕ is an isomorphism if and only if ϕ is onto and $ker\phi = \{r \in R \mid \phi(r) = 0\} = \{0\}$. 5
 - (b) If ϕ is an isomorphism from a ring R to a ring S, then show that ϕ^{-1} is an isomorphism from S to R. 5

OR

(c) Let R be a ring with unity e. Show that the mapping $\phi : \mathbb{Z} \to R$ given by $n \to ne$ is a ring homomorphism. 5

3 (Sem-4/CBCS) MAT HC3/G 6

- (d) Define kernel of a ring homomorphism.
 Let φ be a homomorphism from a ring
 R to a ring S. Prove that kerφ is an ideal at R.
- 6. (a) State and prove the second isomorphism theorem for rings.
 - (b) Let R be a commutative ring of characteristic 2. Show that the mapping $a \rightarrow a^2$ is a ring homomorphism from R to R. 2

OR

- (c) State and prove the third isomorphism theorem for rings. 1+6=7
- (d) Prove that every ideal of a ring R is the kernel of a ring homomorphism of R.
 3
- 7. (a) Let F be a field. If $f(x) \in F[x]$ and deg f(x) = 2 or 3, then prove that f(x)is reducible over F if and only if f(x)has a zero in F. 4

3 (Sem-4/CBCS) MAT HC3/G 7 Contd.

(b) In a principal ideal domain prove that an element is an irreducible if and only if it is a prime.

OR

(c) Let p be a prime and suppose that $f(x) \in Z[x]$ with $deg f(x) \ge 1$. Let $\overline{f(x)}$ be the polynomial in $Z_p[x]$ obtained from f(x) by reducing all the coefficients of f(x) modulo p. If f(x) is irreducible over Z_p and $deg \overline{f(x)} = deg f(x)$, then prove that f(x) is irreducible over Q. 5

(d) Let

 $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0 \in Z[x].$ If there is a prime p such that $p \nmid a_n, \ p \mid a_{n-1}, \dots, p \mid a_0 \text{ and } p^2 \not \mid a_0,$ then prove that f(x) is irreducible over Q. 5

8

3 (Sem-4/CBCS) MAT HC3/G

4500