Total number of printed pages-7

3 (Sem-3/CBCS) MAT HC 1

2023

MATHEMATICS

(Honours Core) Paper : MAT-HC-3016 (Theory of Real Functions) Full Marks : 80

(selof to sur Time : Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following questions: 1×10=10
 - (a) Is 0 a cluster point of (0,1)?
- (b) "If the limit of a function f at a point C of its domain does not exist, then f diverges at C." (Write True or False)
 - (c) Define $\lim_{x\to c} f(x) = \infty$, where $A \subseteq \mathbb{R}$ and $f: A \to \mathbb{R}$ and $C \in \mathbb{R}$ is a cluster point of A.

2 DI OH TAM 2080 Contd.

- (d) Write sequential criterion for continuity.
- (e) What do you mean by an unbounded function on a set ?
- (f) Let $A,B \subseteq \mathbb{R}$ and let $f:A \to \mathbb{R}$ be continuous on A and let $g:B \to \mathbb{R}$ be continuous on B. Under what condition $g \circ f:A \to \mathbb{R}$ is continuous on A?
- (g) "If a function is continuous then it is uniformly continuous."

(Write True or False)

- (h) If functions f_1, f_2, \dots, f_n are differentiable at c, write the expression for $(f_1, f_2, \dots, f_n)'(c)$.
- (i) The function f(x) = x is defined on the interval I = [0,1]. Is 0 a relative maximum of f ?
- (j) Define Taylor's polynomial for a function f at a point x_0 , supposing f has an *n*th derivative at x_0 .

3 (Sem-3/CBCS) MAT HC 1/G 2

- 2. Answer the following questions: 2×5=10
 - (a)Use $\varepsilon - \delta$ definition of limit to show

that
$$\lim_{x\to 0} \frac{x^2}{|x|} = 0$$
.

- (b) Show that the absolute value function f(x) = |x| is continuous at every point $c \in \mathbb{R}$.
- Give an example of a function (c) $f:[0,1] \to \mathbb{R}$ that is discontinuous at A every point of [0,1], but |f| is continuous on [0,1].
- (d) "Continuity at a point is not a sufficient condition for the derivative to exist at that point." Justify your answer.

(e) Show that
$$\lim_{x\to 0^+} \frac{\sin x}{\sqrt{x}} = 0$$
.

- 3. Answer any four parts : 5×4=20
 - (a) Prove that a number $c \in \mathbb{R}$ is a cluster point of a subset A of \mathbb{R} if and only if there exists a sequence $\{a_n\}$ in A such that $\lim_{n \to \infty} a_n = c$ and $a_n \neq c$ for all $n \in \mathbb{N}$.

3 (Sem-3/CBCS) MAT HC 1/G 3 A OVER TAM POS Contd.

(b) Show that (using $\varepsilon - \delta$ definition of limit)

$$\lim_{x \to 2} \frac{x^3 - 4}{x^2 + 1} = \frac{4}{5}$$

- (c) Prove that if I = [a,b] is a closed bounded interval and if $f: I \rightarrow \mathbb{R}$ is continuous on I then f is bounded on I.
 - (d) Show that if f and g are uniformly continuous on a subset A of \mathbb{R} then f+g is uniformly continuous on A.
- (e) Suppose that f is continuous on a closed interval I = [a,b] and that f has a derivative in the open interval (a,b). Then there exists at least one point c in (a,b) such that

$$f(b)-f(a)=f'(c)(b-a).$$

(f) Let $f: I \to \mathbb{R}$ be differentiable on the interval *I*. Then prove that *f* is increasing if and only if $f'(x) \ge 0$ for all $x \in I$.

3 (Sem-3/CBCS) MAT HC 1/G 4 8 O(1 OH TAM (2020) 8-inst) 8

- 4. Answer any four parts : $10 \times 4 = 40$
 - (a) Prove that a real valued function f is $c \in \mathbb{R}$ if and only if whenever every sequence $\{c_n\},\$ converging to c, then corresponding sequence $\{f(c_n)\}$ converges to f(c).
 - (b) (i) Show that every infinite bounded subset of R has at least one limit 5
 - to and (ii) Let $A \subseteq \mathbb{R}$, let $f: A \to \mathbb{R}$ and let $c \in \mathbb{R}$ be a cluster point of A. If $a \le f(x) \le b \text{ for all } x \in A, \ x \neq c \text{ and}$ if $\lim_{x \to c} f(x)$ exist then prove that $1000 \quad \text{doual } a \leq \lim_{h \to \infty} f \leq b$ 5
 - (c) (i) Let I = [a, b] be a closed bounded interval. Let $f: I \to \mathbb{R}$ be such that f is continuous. Prove that f is uniformly continuous on [a,b].

5

3 (Sem-3/CBCS) MAT HC 1/G 5 3 OVI OH TAM (20) Contd.

(ii) Show that the function $f(x) = \frac{1}{x^2}$ is uniformly continuous on $A = [1, \infty)$.

- (d) Let I = [a,b] be a closed bounded interval and let $f: I \to \mathbb{R}$ be continuous on *I*. Then *f* has an absolute maximum and an absolute minimum on *I*.
- (e) (i) Let I be a closed bounded interval and let $f: I \to \mathbb{R}$ be continuous on I. Then the set $f(I) = \{f(x) : x \in I\}$ is a closed bounded interval. 6
- (ii) Let $A,B \subseteq \mathbb{R}$ and let $f:A \to \mathbb{R}$ and $g:B \to \mathbb{R}$ be functions such that $f(A) \subseteq B$. If f is continuous at a point $c \in A$ and g is continuous at $b=f(c)\in B$, then show that the composition $g \circ f:A \to \mathbb{R}$ is continuous at c. 4

3 (Sem-3/CBCS) MAT HC 1/G 6

- (f) (i) Let I = [a,b] and let $f: I \to \mathbb{R}$ be continuous on I. If f(a) < 0 < f(b)or if f(a) > 0 > f(b), then prove that there exists a number $c \in (a,b)$ such that f(c) = 0.
 - (ii) Use the definition to find the derivative of the function $f(x) = \frac{1}{\sqrt{x}}$ for x > 0.
- (g) (i) State and prove Taylor's theorem. 2+5=7
 - (ii) Using the Mean Value theorem prove that $|\sin x - \sin y| \le |x - y|$ for all x, y in \mathbb{R} . 3
- (h) (i) Show that

$$1 - \frac{1}{2}x^2 \le \cos x$$

for all
$$x \in \mathbb{R}$$

5

(ii) Evaluate $\lim_{x\to 0} \left(\frac{1}{x^2} - \frac{1}{\sin^2 x}\right)$ 5

3 (Sem-3/CBCS) MAT HC 1/G 7

3500