Total number of printed pages-20

3 (Sem-3/CBCS) MAT HG 1/2/RC

2023

MATHEMATICS

(Honours Generic/Regular)

Answer the Questions from any one Option.

OPTION-A

Paper : MAT-HG-3016 / MAT-RC-3016

(Differential Equation)

OPTION-B

Paper : MAT-HG-3026

(Linear Programming)

Full Marks : 80

Time : Three hours

The figures in the margin indicate full marks for the questions.

Contd.

OPTION-A

Paper : MAT-HG-3016 / MAT-RC-3016

(Differential Equation)

Answer **either** in English **or** in Assamese.

- Answer the following questions : 1×10=10
 তলত দিয়া প্রশ্নবোৰৰ উত্তৰ দিয়া :
 - (a) Define order and degree of an ordinary differential equation.

সাধাৰণ অৱকল সমীকৰণৰ ক্ৰম আৰু ঘাতৰ সংজ্ঞা লিখা।

- (b) What do you mean by an ordinary differential equation ? Give one example. সাধাৰণ অৱকল সমীকৰণ বুলিলে কি বুজা ? এটা উদাহৰণ দিয়া।
- (c) Define exact differential equation. যথার্থ অৱকল সমীকৰণৰ সংজ্ঞা লিখা।
- (d) Obtain the differential equation of family of parabolas given by $y^2 = 4ax$.

y² = 4ax অধিবৃত্তৰ পৰিয়ালটোৰ অৱকল সমীকৰণটো গঠন কৰা।

- (e) Write the condition of exactness of an ordinary differential equation.
- এটা সাধাৰণ অৱকল সমীকৰণৰ যথাৰ্থতাৰ চৰ্ত লিখা। (f) Find the integrating factor of

 $\frac{dy}{dx} + \frac{y}{x} = \cos x \, .$

 $\frac{dy}{dx} + \frac{y}{x} = \cos x$, ৰ অনুকলন গুণক নির্ণয় কৰা।

(g) Define orthogonal trajectory of a family of curve.

এটা বক্ৰ পৰিয়ালৰ লাম্বিক প্ৰক্ষেপপথৰ সংজ্ঞা লিখা।

(h) Write the complementary function of $(D^2 + 4)y = x^2$.

 $(D^2 + 4)y = x^2$ অৱকল সমীকৰণটোৰ পৰিপূৰক ফলনটো লিখা।

(i) Write the general form of a linear differential equation of nth order.
 এটা n মাত্ৰাৰ ৰৈখিক অৱকল সমীকৰণৰ সাধাৰণ ৰূপটো লিখা।

З

(j) If $y_1 = \sin 2x$ and $y_2 = \cos 2x$, then find the Wronskian of $y_1(x)$ and $y_2(x)$.

যদি $y_1 = \sin 2x$ আৰু $y_2 = \cos 2x$, তেন্তে $y_1(x)$ আৰু $y_2(x)$ ৰ Wronskian নিৰ্ণয় কৰা।

- Answer the following questions : 2×5=10
 তলত দিয়া প্ৰশ্নবোৰৰ উত্তৰ দিয়া ঃ
 - (a) Determine the particular integral of the differential equation

$$\frac{d^2y}{dx^2} + \frac{dy}{dx} + 1 = \sin 2x.$$

 $\frac{d^2y}{dx^2} + \frac{dy}{dx} + 1 = \sin 2x$ অৱকল সমীকৰণটোৰ বিশেষ অনুকলন নিৰ্ণয় কৰা।

(b) Derive the orthogonal trajectory of $xy = a^2$.

xy = a^2 , ৰ লাম্বিক প্ৰক্ষেপপথ নিৰ্ণয় কৰা।

(c) Find the integrating factor of the differential equation
$$(x^{2}y - 2xy^{2})dx - (x^{3} - 3x^{2}y)dy = 0$$

$$(x^{2}y - 2xy^{2})dx - (x^{3} - 3x^{2}y)dy = 0$$
অৱকল সমীকৰণটোৰ অনুকলন গুণক নিৰ্ণয় কৰা।
(d) Solve: $\frac{dx}{y^{2}} = \frac{dy}{x^{2}} = \frac{dz}{x^{2}y^{2}z^{2}}$
(e) Solve: $\frac{dx}{y^{2}} = \frac{dy}{x^{2}} = \frac{dz}{x^{2}y^{2}z^{2}}$
(e) Solve: $\frac{d^{2}y}{dx^{2}} + 4\frac{dy}{dx} + 13y = 0$
সমাধান কৰা : $\frac{d^{2}y}{dx^{2}} + 4\frac{dy}{dx} + 13y = 0$
Answer the following: (any four) $5 \times 4 = 20$
তলত দিয়া প্ৰশ্নবোৰৰ উত্তৰ দিয়া : (যিকোনো চাৰিটা))
(a) Solve: $x^{2}\frac{d^{2}y}{dx^{2}} - 3x\frac{dy}{dx} + 4y = 2x^{2}$
সমাধান কৰা : $x^{2}\frac{d^{2}y}{dx^{2}} - 3x\frac{dy}{dx} + 4y = 2x^{2}$

5

3 (Sem - 3/CBCS) MAT HG 1/2/RC/G

3.

Contd.

)

(b) Find the orthogonal trajectories of the series of hypocycloid $x^{2/3} + u^{2/3} = a^{2/3}$.

> $x^{2/3} + u^{2/3} = a^{2/3}$, পৰিয়ালটোৰ লাম্বিক প্ৰক্ষেপপথ নিৰ্ণয় কৰা।

(c)Solve the simultaneous linear differential equations $\frac{dx}{dt} = -py$ and

> $\frac{dy}{dt} = px$ and show that the point (x, y)lies on a circle.

> $\frac{dx}{dt} = -py$ আৰু $\frac{dy}{dt} = px$; অৱকল সমীকৰণটো সমাধান কৰা আৰু দেখুওৱা যে (x, y) বিন্দুটো এটা বৃত্তত থাকিব।

Solve by reducing to exact differential equation

 $xydx + (2x^2 + 3y^2 - 20)dy = 0$

 $xydx + (2x^2 + 3y^2 - 20)dy = 0$ সমীকৰণক যথাৰ্থ অৱকল সমীকৰণলৈ সমানীত কৰি সমাধান কৰা।

6

3 (Sem - 3/CBCS) MAT HG 1/2/RC/G

(d)

(e) Solve the Bernoulli's equation :

$$x\frac{dy}{dx} + y = y^2 \log x$$

বাৰ্নোলীৰ সমীকৰণটো সমাধান কৰা ঃ

$$x\frac{dy}{dx} + y = y^2 \log x$$

(f) Solve $x^2 \frac{d^2 y}{dx^2} - 3x \frac{dy}{dx} + 4y = 0$, given that $y = x^2$ is one of the solution. $x^2 \frac{d^2 y}{dx^2} - 3x \frac{dy}{dx} + 4y = 0$ অৱকল সমীকৰণটো সমাধান কৰা, য'ত সমীকৰণটোৰ এটা সমাধান $y = x^2$. Answer the following : **(any four)** 10×4=40 তলত দিয়া প্ৰশ্নবোৰৰ উত্তৰ দিয়া : **(যিকোনো চাৰিটা)**

(a) Solve by the method of variation of

parameter :
$$\frac{d^2y}{dx^2} - y = \frac{2}{1 + e^x}$$

প্ৰাচল বিচৰণ পদ্ধতিৰে সমাধান কৰাঃ

$$\frac{d^2y}{dx^2} - y = \frac{2}{1 + e^x}$$

3 (Sem - 3/CBCS) MAT HG 1/2/RC/G 7

4.

(b) Solve :
$$\frac{d^4y}{dx^4} - y = x \sin x$$

সমাধান কৰা ঃ
$$\frac{d^4y}{dx^4} - y = x \sin x$$

(c) Solve:
$$\frac{dx}{dt} + \frac{dy}{dt} + 2x + y = 0$$

$$\frac{dy}{dt} + 5x + 3y = 0$$

সমাধান কৰা ঃ $\frac{dx}{dt} + \frac{dy}{dt} + 2x + y = 0$

$$\frac{dy}{dt} + 5x + 3y = 0$$

(d)

Solve the exact differential equation:

$$x^{2}\frac{d^{2}y}{dx^{2}} + 3x\frac{dy}{dx} + y = \frac{1}{(1-x)^{2}}$$

যথাৰ্থ অৱকল সমীকৰণটো সমাধান কৰা ঃ

$$x^{2}\frac{d^{2}y}{dx^{2}} + 3x\frac{dy}{dx} + y = \frac{1}{(1-x)^{2}}$$

 $\frac{d^2y}{dx^2} - 4x\frac{dy}{dx} + (4x^2 - 1)y = -3e^{x^2}\sin 2x$

নৰ্মাল ৰূপলৈ সমানীত কৰি সমাধান কৰা ঃ

$$\frac{d^2y}{dx^2} - 4x\frac{dy}{dx} + (4x^2 - 1)y = -3e^{x^2}\sin 2x$$

(f)

Show that the term $\frac{1}{x(x^2-y^2)}$ is an

integrating factor of the differential equation $(x^2 + y^2)dx - 2xy dy = 0$ and hence solve it.

দেখুওৱা যে $(x^2 + y^2)dx - 2xy dy = 0$

সমীকৰণৰ এটা অনুকলন গুণক $\displaystyle rac{1}{xig(x^2-y^2ig)}$ আৰু

সমাধান কৰা।

Contd.

(g) Solve the equation, $4y = x^2 + p^2$, where

$$p \equiv \frac{dy}{dx}$$

সমাধান কৰা ঃ 4
$$y=x^2+p^2$$
, যত $p=rac{dy}{dx}$

(h) Discuss the method of solving a Bernoulli's equation of the form $\frac{dy}{dx} + Py = Qy^{n}; \text{ where } P \text{ and } Q \text{ are}$ constants as function of x.

এটা $rac{dy}{dx} + Py = Qy^n$ ৰূপৰ বাৰ্নোলীৰ সমীকৰণ সমাধান কৰাৰ পদ্ধতি আলোচনা কৰা, য'ত P আৰু Q হৈছে ধ্ৰুৱক বা x ৰ ফলন।

3 (Sem - 3/CBCS) MAT HG 1/2/RC/G

10

OPTION-B

Paper : MAT-HG-3026 (Linear Programming)

- 1. Answer the following questions : (Choose the correct answer) 1×10=10
 - (a) A basic feasible solution whose variables are
 - (i) degenerate
 - (ii) non-degenerate
 - (iii) non-negative
 - (iv) None of the above
 - (b) The inequality constraints of an LPP can be converted into equation by introducing
 - (i) negative variables
 - (ii) non-degenerate B.F.
 - (iii) slack and surplus variables
 - (iv) None of the above

3 (Sem - 3/CBCS) MAT HG 1/2/RC/G 11

(c) A solution of an LPP, which optimize the objective function is called

- (i) basic solution
- (ii) basic feasible solution
- (iii) optimal solution
- (iv) None of the above
- (d) Given a system of m simultaneous linear equations in n unknowns (m<n) the number of basic variables will be
 - (i) m
 - (ii) n
 - (iii) n-m
 - (iv) n+m
- (e) A simplex in *n*-dimension is a convex polyhedron having
 - (i) n-1 vertices
 - (ii) n vertices
 - (iii) n + 1 vertices
 - (iv) None of the above

At any iteration of the usual simplex method, if there is at least one basic variable in the basis at zero level and all $z_i - c_i \ge 0$ the current solution is

(i) infeasible

(f)

(ii) unbounded

(iii) non-degenerate

(iv) degenerate

(g) Let $X = \{x_1, x_2\} \subset \mathbb{R}^2$. Then the convex hull C(X) of X is

(i)
$$\{\lambda x_1 + (1-\lambda) x_2 : \lambda \ge 1\}$$

(ii)
$$\{\lambda x_1 + (1-\lambda) x_2 : \lambda \leq 0\}$$

(iii)
$$\{\lambda x_1 + (1-\lambda)x_2 : 0 < \lambda < 1\}$$

(iv) None of the above

(h) For given linear programming problem,if z is an objective function

- (i) Max z = Min z(ii) Max z = Min (-z) (iii) Max (-z) = Max z
- (iv) None of above

3 (Sem - 3/CBCS) MAT HG 1/2/RC/G 13

- (i) The set $\{(x_1, x_2): x^2_1 + x^2_2 \le 1\}$ is a
 - (i) open set
 - (ii) closed set
 - (iii) neither open nor closed
 - (iv) open and closed both

(j) In linear programming problem

- (i) objective function, constraints and variables are all linear
- (ii) only objective function to be linear
- (iii) only constraints are to be linear
- (iv) only variables are to be linear
- 2. Answer the following : $2 \times 5 = 10$
 - (a) A hyperplane is given by the equation $3x_1 + 2x_2 + 4x_3 + 7x_4 = 8$, find in which half space do the point (-6, 1, 7, 2) lie.
 - (b) Prove that $x_1 = 2$, $x_2 = -1$ and $x_3 = 0$ is a solution but not a basic solution to the system of equations

 $3x_1 - 2x_2 + x_3 = 8$ $9x_1 - 6x_2 + 4x_3 = 24$

(c) Write the dual of the following primal problem :

 $\text{Minimize } Z = 3x_1 + 5x_2$

subject to $3x_1 + 5x_2 = 12$

 $4x_1 + 2x_2 = 10$

with $x_1, x_2 \ge 0$

(d)

In a two-person Zero-sum game, the pay-off matrix is given by

B						
	•	I.	II	III		
A	Ι	6	8	6		
	II	4	12	2.		

Find its saddle points.

(e) Show that the linear function

15

 $Z = C X, X \in \mathbb{R}^n, C \in \mathbb{R}$ is a convex function.

3 (Sem - 3/CBCS) MAT HG 1/2/RC/G

3. Answer any four of the following : 5×4=20

(a) Solve graphically the following LPP :

Max. $Z = 5x_1 + 7x_2$

subject to $x_1 + x_2 \le 4$

 $3x_1 + 8x_2 \le 24$ $10x_1 + 7x_2 \le 35$

 $x_1, x_2 \ge 0$

(b) Find all basic feasible solutions of the system of equations

 $x_1 + 2x_2 + 3x_3 + 4x_4 = 7$

 $2x_1 + x_2 + x_3 + 2x_4 = 3$

- (c) Prove that the set of all convex combinations of a finite number of points $x_1, x_2, x_3, \dots, x_n$ is a convex set.
- (d) Prove that the dual of a dual is a Primal problem itself.

 (e) Solve the following transportation problem using North-West corner method whose cost matrix is given below:

Source	D_1	<i>D</i> ₂	<i>D</i> ₃	<i>D</i> ₄	Supply
S_1	7	10	14	8	30
S ₂	7	11	12	6	40
S_3	5	8	15	9	30
Demand	20	20	25	35	

(f) The pay-off matrix of a game is given below. Find the solution of the game to A and B.

	В					•
	1	Ι	П	Ī	IV	V
A	Ι	-2	0	0	5	3
	П	3	2	. 1	2	2
	Ш.	-4	-3	0	-2	6
	Ń	5	3	-4	2	-6

3 (Sem - 3/CBCS) MAT HG 1/2/RC/G

17

Contd.

4. Answer **any four** questions : 10×4=40

- (a) Old hens can be bought for Rs. 2 each but young ones cost Rs. 5 each. The old hens lay 3 eggs per week and the young ones 5 eggs per week, each being worth 30 paise. A hen costs Re. 1 per week to feed. If I have only Rs. 80 to spend for hens, how many of each kind shall I buy to give a profit of more than Rs. 6 per week, assuming that I can not house more than 20 hens? Formulate the LPP and solve by graphical method.
- (b) Prove that if either the primal or the dual problem of an LPP has a finite optimal solution, then the other problem also has a finite optimal solution.Furthermore, the optimal values of the objective function in both the problems are the same, i.e.

$$\operatorname{Max} Z_{x} = \operatorname{Max} Z_{w}$$

Solve the following assignment problem :

Projects

		A	В	С	D
	Ι	12	10	10	8
ngineer	_ II	14	Not suitable	15	11
	Ш	6	10	16	4
	IV	8	10	9	7.

Er

(d)Use simplex method to solve the LPP $\operatorname{Max} Z = 4x + 10y$

subject to the constraints

 $2x + y \leq 50$ $2x + 5y \le 100$ $2x + 3y \le 90$ $x, y \ge 0$

(e)

Use the two-phase simplex method to solve Max $Z = 5x_1 - 4x_2 + 3x_3$ subject to the constraints

 $2x_1 + x_2 - 6x_3 = 20$

 $6x_1 + 5x_2 + 10x_3 \le 76$

 $8x_1 - 3x_2 + 6x_3 \le 50$

 $x_1, x_2, x_3 \ge 0$

3 (Sem - 3/CBCS) MAT HG 1/2/RC/G 19 Contd.

(c)

(f) Solve the game whose pay-off matrix is

$$\begin{bmatrix} -1 & -2 & 8 \\ 7 & 5 & -1 \\ 6 & 0 & 12 \end{bmatrix}$$

- (g) If in an assignment problem, a constant is added or subtracted to every element of a row (or column) of the cost matrix $[c_{ij}]$, then prove that an assignment which minimizes the total cost for one matrix, also minimizes the total cost for the other matrix.
- (h)

(i) What is game theory?

 (ii) Describe a two-person zero-sum game. Also mention any two basic assumptions in it.

(iii) Explain the following terms

20

Optimal strategy, Pay-off matrix. 2+2=4

3 (Sem - 3/CBCS) MAT HG 1/2/RC/G

4000

2