

COST EFFECTIVENESS ANALYSIS

4.1 INTRODUCTION

The practice of fish culture is said to have originated in Asia sometimes in the distant past when fishes were raised for ceremonial religious purposes (Pantulu, 1974). Even today, it remains some of its esoteric aura, at least in a few countries of the region where fish culture continues to remain a strictly private enterprise, and the entrepreneurs seldom reveal accurate details of either his modus operandi or benefit and cost structure of his operations.

Large-scale development of intensive fish culture or proper management of fisheries requires having a thorough knowledge about the economic aspects. Operation of fishing gears relate mostly with the economics of the fishery management sector. Low yield and the consequent decrease in returns in operation by a particular fishing gear demand the adoption of diversified methods of fishing. A comparative benefit-cost study would help a fish farmer in arriving at intelligent decision in regard to enterprise itself and the expenditures to be incurred on various inputs including capital costs and operating costs.

4.2 REVIEW OF LITERATURE

Few studies exist on the comparative economics of fishing gears and other implements necessary for fish culture. Krishna Iyear (1968) studied on comparative fishing ability and economic efficiency of mechanized trawlers operating along the Kerala coast and concluded that the vessels of '11m class' are better than '10m class' both from the consideration of catch / unit effort and also total effort / year with better

percentage (%) return of capital. In 1972, Naidu and George worked on fishing experiments with frame nets in Hirakud river of Orissa and showed that the net with 1.75m frames gave the highest catch. A thorough study on economic evaluation of fish culture enterprises was worked out by Pantulu (1974). He suggested that application of certain economic indicators such as "Benefit-Cost Ratio" and "Internal Rate of Return" in fish culture enterprise removes the elements of uncertainty, regarding the relative economic status of various developmental projects.

Krishna Kartha (1978) worked on economics of the indigenous fishing units at Cochin: a case study. By using various economic indicators such as Profitability, Rate of Return (ROR), Turnover Ration (TR), Pay Back Period (PBP) etc. he drew the conclusion that *Thanguvala* unit (Profitability, 20.512%) is economically most effective over the *Ayila* unit (Profitability, 12.02%).

Similar works on economic efficiency on '9.82m and 11m fishing trawlers' along Kerela cost was carried out by Krishna Iyer (1983). By using cost benefit analysis of both the fishing, trawlers he concluded that with the increase in the number of fishing tripd, the profit also increase for both the sizes of trawlers. Further, he found the Break Even - Point (BEP) to be 185 and 210 fishing trips for 9.82 and 11m trawlers respectively. An economic analysis on 22m and 23m deep-sea trawlers was worked out by Unithan (1985), and he reported the profit on capital investment of 18% for a '23m trawler'. Likewise, Sadanandan (1988) has worked on economics of gill netting and two boat mid water trawling and came to the conclusion that gill netting is profitable at 17.5 to 25.2% while two mid water trawling was profitable at18.5%. Day and Kar (1989) have made an attempt on measuring efficiency of different

contd....

٢.,

70

fishing gears at Sone beel, Assam; in terms of their cost of fabrication and CPGH, and in that *Dori* (trap) was found to be the most efficacious (CPGH 0.050 + 0.021 kg) over the other gear types.

Datta, et al., 1989 have carried out "an economic analysis of different type of bag net (Behundi jal) units in West Bengal coast. By using various economic indicators such as the B-C ratio, the NPW, the IRR and N-K ratio, it has been observed that all types of units were economically feasible, and yielded reasonably good profit margin. Further, they found that and non-mechanized units provided maximum benefit at least coast as compared to the mechanized units. In 1992, Trinos studied the technological and socioeconomic assessment of the Magat Reservoir fishery, Phillipines and reported that the annual average fish catch was dependent on the type of gear and boat used and upon the fishing effort in terms of the number of hours per day.

Amarasinghe (1992) worked on evaluating efficiency of different fishing methods in tropical, shallow reservoir in Sri Lanka and indicated that gill netting would not have an adverse effect on fish stocks but seining seemed to lead to diminished returns. He further stated that the efficiency of the other fishing methods (water beating, beach seining on cast netting) were higher than normal gill netting.

Economics of fishing units in the backwater of Kerala was done by Silubhai Raj, et al. (1992). They studied the cost benefit analysis of crafts and gears used for stack net, cast net, bag net and ring net. The study reveals that the rates of return for capital employment were 67.94% for gill net, 5.32% for bag net, and 20.78% for ring net. In spite of high rate of return, net income of fishing units were low.

Sathiadhas, et al., 1993 studied economics of traditional gill net fishing using wind energy along Tamil Nadu coast. The key economic indicators such as initial investment, rate of return, cost of production, net returns etc. had been worked out, which indicated that utilization of wind energy is most suitable and economically viable for the traditional fishermen operating gill nets in Tamil Nadu coast. Likewise, Tewari, (1994) from the study on "economic of input resource management in Reservoir fisheries" concluded that gear weight (Kg), fishing effort (number of annual fishing days) fishing experience (years) seemed to influence fishing activity. He further opined that under existed working capital constraints, increase in fishing effort should be accompanied with reduction in gear weight to optimize the returns.

From the study of previous research activities following drawbacks have been observed:

1. Most of the works on the efficiencies of fishing gears in India and abroad have been conducted in a single or two water bodies (reservoir fisheries). But the present study has been conducted in 57 nos. of beels(13% of the total regd. beels).

- 2. The cost and return analysis of fishing gears have been worked out in marine waters, riverine fisheries or large reservoir fisheries. But no such extensive work has been carried out in the flood plain lakes (beels). Due to changed hydrological conditions of flood plain beels in comparison to the reservoir fisheries the efficiencies of fishing gears will also vary greatly.
- 3. Though a few literatures have considered cost and return aspect while analyzing the effectiveness of a particular gear they have fail to incorporate the opportunity cost of labor, which is significantly high in the riverine form. Moreover, the costing methods used in analysis is too traditional, the modern costing methods currently used by the professional organizations are not being used by any of the literature. Hence, their conclusions are in question.
- 4. By the same token none of the above study measure the effectiveness based on the modern concept of productivity (Productivity = Value of total catch / Total Cost (Capital cost + Operational cost). Measuring productivity in this fashion may lead to the conclusions, which differs from the conclusions of the above studies.

In the light of above, the present work has been carried out to evaluate the costs return analysis of the fishing gears (which are being in use in the flood plain beel fisheries of Assam) using more sophisticated evaluation techniques.

4.3. MATERIALS AND METHODS

A pilot survey was carried out in 1996 in different beels of Assam for selecting sample centers for an in depth study. Based on the investigation, 57 numbers of beels, located in 13 districts of Assam (Appendix-II) were selected randomly for detailed study.

Data on day- to- day costs and earnings were collected from selected units with the help of the questionnaire (Appendix-1) and through the verification of documents and survey method in the year 1995-1996.

Seven criteria were used to work out economic feasibility of investment on the fishing gears as mentioned below:

- (1) Capital Turn Over Ratio (CTOR): The capital turnover ratio i.e. the income generated for each rupee invested is obtained by dividing the total revenue with the capital investment.
- (2) Rate of return (ROR): The rate of return to capital is obtained by dividing the profit after tax with the capital investment.
- (3) Pay back period (PBP): It indicates the recovery period of the capital. investment and is obtained by dividing the capital investment with profit after tax plus depreciation.
- (4) Benefit-cost ratio (B-C ratio): It is the ration of present value of benefit streams and the present value of cost stream.

- (5) Net present worth (NPW): It is also known as net present value (NPV) and is equal to the present value of future returns, discounted at the marginal cost of capital, minus the present value of the cost of the investment. In an economic study, projects are expressed, as far as practicable in monetary terms. One of the main considerations in such studies is determining whether an enterprise is economical in the long run. Hence it is necessary to recognize the time value of money. A productive investment of capital results in the realization of economic returns. So, a given unit of money is worth more now than the prospect of the same unit next year or at some later date. The investment made in a fishing operation should be recoverable with sufficient attractive returns over a given period of time. Thus investment or loan "is the amount necessary to secure the promise of future payment or series of payments, with interest at a given rate"(Grant and Ireson, 1960). To the investor or the borrower the present worth represents the present sum required to secure promise of such future payment or payments.
- (6) Internal rate of return (IRR): It is defined as the interest rate that equates the present value of the expected future cash flows or receipts, to the initial cost outlay. Sometimes only IRR is used instead of benefit cost ratio for economical evaluation. Stated simply, internal rate of return is that rate of return or that rate of interest on investment where the benefit cost ratio is unity. As a first step in the computation of IRR, benefit cost ratios at three or four different assumed trial rates of interest are calculated. By fitting a regression line to the scatter of B-C ratios against the respective trial rates of interest, the interest rate where B/C ratio is unity is easily determined.
- (7) Net benefit-investment ratio (N-K ratio): It is the present value of net cash flows in each year after the stream has positive return to the present value of incremental net cash flow in the initial year when the stream is negative.
- (8) Opportunity Cost: The opportunity cost of man-day of labour is what he would otherwise have earned in other best alternative occupation. The best alternative occupation in the case of the most of the fishermen is the daily wage labourer, hence the daily wage rate prevailing in that area has been taken as opportunity cost of labour.

The B-C ratio, the NPV, the IRR and the N-K ratio had been worked out by conventional methods (Gittinger, 1982) as follows:

'

۴.

, **•**

.

	í=n ∑	Bt			
Benefit-cost ratio		(1+ i) ^t			
(B-C ratio)	t=a ∑ t=0	Ct (1+ i)			
Net present worth (NPV)	t=n $t=1$	$\frac{Bt}{(1+i)^t}$	-	t=n ∑ t=0	$\frac{Ct}{(1+i)^t}$

Internal rate of return
$$\Rightarrow \sum_{t=1}^{n} \frac{Bt}{(1+1)^{t}} = \sum_{t=1}^{n} \frac{Ct}{(1+1)^{t}}$$

Net benefit-investment ratio =
$$\sum_{t=1}^{n} \frac{Nt}{(1+i)^{t}}$$
 / $\sum_{t=0}^{n} \frac{Kt}{(1+i)^{t}}$

ł

.

Where,

Bt = benefit* from investment in the year 't'

Ct = investment** in year 't'

Nt = incremental net cash flow in each year after the stream has return positive

Kt = incremental net cash flow in the initial year when the stream is negative

N = life of boat/gear

i = interest (discount) rate.

I = IRR

* Benefits are evaluated from the stand point of the economy of the individual or individuals running the enterprise. Benefits to be reckoned which should be tangible and capable of being estimated in financial terms. Secondary benefits or intangible benefits should be considered only as a supplementary justification of the project. Benefits are generally expressed as an annual equivalent over the established period of analysis. Usually in new ventures, there is a time lag between the commencement of the project and the realization of the optimum benefits. Hence, benefits increase gradually till they reach an optimum figure.

** The economic costs in fishing operation is segregated into installation cost or capital investment and operational or variable costs, which have been described below:

(i) Installation: It is also known as capital investment (CI) and includes the total amount needed to install fishing implements such as cost of gear and cost of Boat.

(ii) Fixed cost: It is the depreciation value of the capital investment, i.e. the depreciation of gears and boats in this case. Fixed cost also includes interests incurred for the capital investment if the amount is taken as loan from bank or some other financial agency. Fixed cost (depreciation) is determined by dividing the capital investments of various items with their life span.

(iii) Variable cost:

It is also known as operational costs and is the amount needed at the time of fishing. It includes various costs such as wages of labor, repair cost of gear, repair cost of boats etc.

The feasibility analysis is based upon the following assumption:

- (i) The life expectancy of boat is 12 years
- (ii) Cost and return remain at level obtained in the initial year
- (iii) The effect of future price inflation is not taken into account
- (iv) The weighted average value of fish does not indicate the market price but prices at beel site only.

4.4 OBSERVATION

4.4.1 ECONOMIC ANALYSIS OF MUSARIJAL

Musharijal, which is also known *Mahajal* or *Moharijal* is used sometime as encircling net sometime as drag net and also sometime as *Katal* net during *Katal* fishing which is an indigenous fishing method (Yadav, 1981) of Assam. The fishing by this gear is more intensive and widespread in commercial practices than any other type of fishing gears.

Keeping in view the importance of *Musharijal* that was observed in 51 beels of Assam, an attempt has been made to evaluate economic analysis on the following objectives:

- (a) To examine the costs and return of the gear in different beels;
- (b) To work out economic feasibility of investment on the unit; and
- (c) To work out its efficiency on the basis of selected economic indicators.

4.4.1.1 Catch and Effort

Average catch and effort per fishing day were shown in table-4.1 along with the number of days of operation. In Gopherahang beel (Cachar) the daily catch was recorded at 82 kg and hence the average annual catch is found higher (17,220kg) than other beels of Assam. On the other hand, Satiyan and Brahmamaijan beel exhibited a minimum annual catch recorded with 2,400 kg. The number of fishing days is found to be minimum (60 days) in Digar bakri beel but Sone beel enjoyed 270 days of fishing that is maximum amongst the surveyed beel. The average annual catch in the operation of *musarijal* is found to be 5514 kg with the average CPGH of 0.1187 kg.

4.4.1.2 Capital Investment and Depreciation

The average initial investment or capital investment for acquisition of boats and gears in different beels of Assam has been worked out at Rs.39558/- (Table-4.1). The total capital investment is found maximum in Sibnarayanpur Anua with Rs.74, 000/-where as minimum in Lakhanabandha and Sagmara beel i.e. Rs.19, 500/-. The difference was mainly due to size of nets and different acquisition price at different places. The depreciation of boats and gears ranges between Rs.2150/- (Sagmara) and Rs.14500/-(Sibnarayanpur) with an average of Rs.6456/-.

4.4.1.3 Total Cost

The total costs have been segregated into fixed and variable costs in the operations of *Musharijal* in different beels. The distinction between fixed and variable costs is made due to the fact that while fixed costs need to be incurred even if the fisherman do not go for fishing and the variable costs are incurred only when there is fishing.

Fixed cost: Fixed costs include depreciation of both crafts and gears, which has been described under the subhead 4.4.1.2.

Variable cost: Among the variable costs, wage for labor; repair of gears; repair of boats and maintenance of boats and gears are the major components. The labor costs were calculated according to the daily wages and total number of days of operation. The variable costs can also be expressed as operational costs. The total operational cost was maximum in Sone beel Rs.135400/- mainly due to maximum days of operation (270 days) and minimum in Sagar beel i.e.Rs.17100/- with only 90 days of operation with an average of Rs.60137/-.

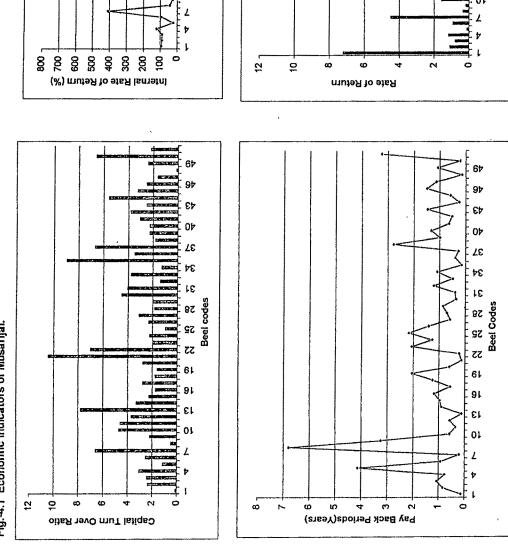
The total cost (fixed cost plus variable costs) ranges from Rs.21450/- (Sagmara beel) to Rs.142386/- (Sone beel) with the average of Rs.66136/- per year.

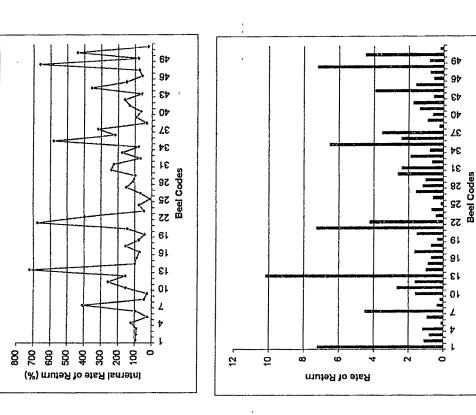
4.4.1.4 Revenue

The data on catch in terms of quality and value realized were observed on daily basis but calculated for annual basis in different beels of Assam. The fishermen sold the fishes at beel site. The average prices of the fish species were much lower at the beel site in comparison to market price and did not exceed Rs.25/kg. Gross revenue on total catches and its price realized per kg the revenue has been worked out.

Annual gross revenue is found maximum (Rs.430500/-) in Gopharchang (Cachar) compared to other beels of Assam. This may be attributed mainly due to fishing days as well as good ground for quality fishes. On the other hand, Sagmara beel exhibits the minimum revenue (Rs.28125/-) generation from the fishing with *musarijal* indicating inefficiency of the gear from the economic viability point of view. As a large part of the beel area is manifested by thick vegetations the gear is seem to be non efficient in this beel.

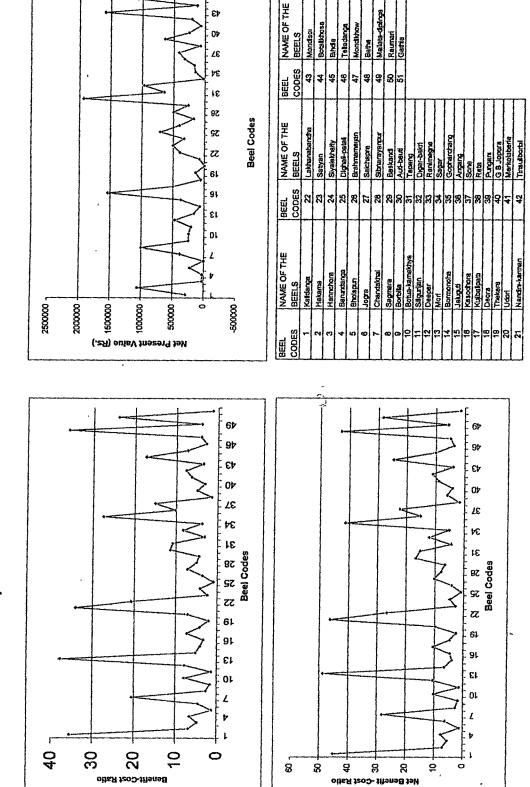
4.4.1.5 Economic Viability


Using the information in the earlier part of the analysis regarding various components of cost, life expectancy of craft and gear, gross revenue on total catches and its price realized per kg the viability of investment ha been worked out (Table-4.1 and Fig.4.1.


of Musarijal
Indicators
Economic
Table-4.1

ì

										-	-						Γ
Beel	C I (Rs)	CI (Rs) Depr. (Rs) TOC (Rs) T C (Rs)	TOC (Rs)		T R (Rs)	PAT (Rs)	CTOR ROR		NOI (Rs) PBP	1	T C/Year Davs	-1	CPGH (Ka) NPV (Rs)	NPV (Rs)	BCR	IRR (%) NKR	NKR
									, ,			1	12 1				
Kalidanga	36000		129200	134533	393750	259217	0.09	7.2	264550	0.14	15750	210	0.156	1591432.5	35.49	33	45.2
Hakama	45000	5833.33	50800	56633.33	105000	48366.67	2.33	1.07	54200	0.83	4200	120	0.109			6	7.11
Harinchora	28000	3733.32	41800	45533.32	67500	21966.68	2.41	0 78	25700	1.08	2700	120	0.087	125003.8		87	5.46
Barundanga	27000		47800	51450	82250	30800	3.04	1.14	34450	0.78	3290	140	0.092	180166.3	6.45	120	7.6
Bhoispuri	44000		.40600	46600	51250	4650	1.16	0.1	10650	4,13	2.25	6	0.071	11791.5	1	23	1.26
Jogra	55000		79500	88250	138750	50500	2.52	0.91	59250	0.93	5550	150	0.096	285772.5	4.5	94	6.19
Chandakhal	39000		76200	81950	256500	174550	6.58	4.47	180300	0.22	10260	180	0.178		20.44	410	28.22
Sagmara	19500		19300	21450	28125	6675	0.47	0.34	- 8825	6.8	1125	45	0.078	32847.05	2.56	44	2.68
Borbilla	37500		20700	75575	82250	6675	2.19	0.17	11550	3.25	3290	140	0.061	26395.5	1.58	26	1.7
Botua-kamakhya	24000		71900	75011	112875	37863.91	4.7	1.57	40975	0.58	4515	210	0.083	221320.05	7.85	154	10.22
Siligurijan	41000		73000	79450	187500	108050	4.57	2.63	114500	0.36	7500	125	0.133	6703.9	1.3	257	1.41
Deepar	39000	5750	76200	81950	144900	62950	3.7	1.61	68700	0.57	6900	230	0.078	384693.9	7.78	156	10.5
Mori	21000	25883.33	47400	49983.33	213750	163766.7	7.79	10.2	166650	0.12	8550	190	0.234	-	37.8	724	48.7
Bormonoha	45000	5833	98900	104733	148750	44017	3.3	0.98	49850	0.9	5950	170	0.078	247980.5	5.09	1001	6.51
Jaluguti	50500	8097.22	61900	69997.22	114000	44002.78	2.26	0.87	52100	0.97	4560	120	0.098	242895.8	4.05	87	3.85
Kasodhora	57500	တီ	51300	60952.77	100000	39047.23	1.74	0.68	48700	1.18	4000	10	0.104	207574	3.21	71	4.6
Kujibalipatti	49000	~	47600	55155.5	135000	79844.5	2.75	1.63	87400	0.56	5400	120	0.156	466021	7.21	153	10 51
Deora	44000		42500	48500	78000	29500	1.77	0.67	35500	1.24	3120	120	0.101	165613	4 06	76	4.76
Thekera	42500		46700	53575	67500	13925	1.59	0.32	20800	2.04	2700	6	0.078		2.03	42	2.54
Udori	42000		46200	52200	115500	63300	2.75	1.5	69300	0.6	4620	110	0.131	368257.8	7.06	145	9.77
Nandini-karmari	34500		103800	108843.35	360000	251156.7	10.4	7.27	256200	0.13	14400	180	0.178	1539405.1	34.12	675	46.27
Lakhanabandha	19500	Ğ	52000	53958.33	136500	82541.67	7	4.23	84500	0.23	5460	210	0 135	497838 3	20.74	396	26.53
Satiyan	30500		45200	47500	60000	12500	1.97	0.4	14800	2.06	2400	120	0.069	53295.7	2.39	45	2.75
Siyalekhaity	37500		54200	59075	84012.51	24937.5	2.24	0.66 2	29812.5	1.26	3360.5	120	0 087	139443.47	4.09	75	4.71
Dighali-patali	40000		30550	33466.66	38250	4783.34	0.96	0.12	16100	2.17	1530	90	0.066	-5002	0.9	6	0 87
Brahmamaijan	26000		41600	45166.66	60000	14833.34	2.31	0.57	18400	1.41	2400	120	0.078	81817	3.55	67	4.15
Salchapra	42500	7589.28	58200	65789.28	131625	65835.72	3.09	1.55	73425	0.58	5265	6	0.13	391212.75	7.18	150	10.21


Sibnarayanpur	74000	14500	34100	48600	135750	87150	1.83	1.17	101650	0.72	5430	09	0.235	503243.5	4.99	112	7.8
Baskandi	59000	9777.77	48700	58477.77	117000	58522.23	1.98	0.99	68300	0.86	4680	6	0.135	327398	4.43	97	6.55
Auti-bauti	45000	8303.57	77200	85503.57	202500	116996.4	4.5	2.59	125300	0.36	8100	180	0.14	707220.51	11.34	239	16.72
Tapang	28000	4333.32	41700	46033.32	112500	66466.68	4.02	2.37	70800	0.39	4500	120	0.146	397779.2	10.83	222	15.21
Digar-bakri	51000	10321.41	28800	39121.41	70500	31378.59	1.38	0.61	41700	1.22	2800	60	0.163	175941	3.14	88	4.44
Ranimegna	45000	8303.57	000/1	85303.57	168750	83446.43	3.75	1.85	91750	0.49	6750	150	0.117	499546	8.3	175	12.1
Sagar	47500	8125	17100	25225	60750	35525	1.28	0.75	43650	1.09	2430	8	0.105	262895	3.7	62	5.19
Gopharchang	48000	8857.14	106300	115157.14	430500	315342.9	8.96	6.5	324200	0.15	17220	210	0.213	1933852.4	27.5	580	41.28
Angang	45500	6986.11	41800	48786.11	157500	108713.9	3.46	2.39	115700	0.39	6300	60	0.218	646776.8	10.31	218	15.21
Sone	45500	6986.11	135400	142386.11	303750	161363.9	6.67	3.5	168350	0.27	12150	270	0.117	972680.3	15.01	317	22.38
Rata	46000	6888.88	64700	71588.88	81250	9661.12	1.77	0.21	16550	2.78	3250	130	0.065	33577.7	1.49	31	1.73
Pungani	30500	3652.77	37900	41552.77	68750	27197 29	2.25	0.89	30850	0.99	2750	110	0.097	152146.3	4.92	2	5.99
G.B.Jopora	52000	9142.85	78600	87742.85	118125	30382.15	2.27	0.58	39525	1.32	4725	135	0.078	166674.75	3.13	99	4.2
Merkolaberia	41000	7464.32	62100	69564.32	125000	55435.68	3.05	1.35	62900	0.65	5000	125	0.104	327563	6.3	132	8.99
Tinsuliborbil	41000	6319.44	78600	84919.44	155250	70330.56	3.79	1.71	76650	0.53	6210	135	0 102	412675.5	7.68	161	11.06
Moridísoi	25000	3250	45500	48750	62500	13750	2.5	0.55	17000	1.47	2500	100	0.071	75164	3.49	60	4
Botalikhosa	27000	4678.5	39900	44578.5	150000	105421.5	5.56	3.9	110100	0.25	6000	80	0.195	642046.2	17.26	356	24.78
Bihdia	28000	4000	43350	47350	91000	43650	3.25	1.56	47250	0.59	3640	130	0.109	254480.7	7.28	149	10.08
Teliadanga	25000	3472.22	45700	49172.22	62500	13327.78	2.5	0.53	16800	1.49	2500	100	0.078	68598	2.94	59	3.74
Moridikhow	54000	8666.66	39600	48266.66	87500	39233 34	1.62	0.73	47900	1.13	3500	100	0.121	211319	3.99	75	4.91
Batha	,38000	5333	129200	134533	393750	259217	0.09	7.2	264550	0.14	15750	190	0.181	1591965	35.91	662	42.89
Mailata-diplinga	28000	3733.32	41800	45533.32	67500	21966.68	2.41	0.78	25700	1.08	2700	202	0.082	129836	3.93	<u> </u>	5.64
Raumari	39000	5750	76200	81950	256500	174550	6.58	4.47	180300	0.22	10260	120	0.163	1069458	23.95	440	28.42
Gathia	37500	4875	20700	75575	82250	6675	2.19	0.17	11150	3.25	3290	100	0.073	23856	1.35	ន	1.49
Average	39559	6455.935	60137.3	60137.3 66136.328	138332	72195.29	3.2	1.98 7	78349.3	1.117 5	5514.37	130.5	0.1186863	416734.89	9.163	173.8	12.14

Contd.....

•

97

Fig.-4.1 Economic indicators of Musarijal.

.

Capital Turn Over Ratio (CTOR): The capital turn over ratio is found maximum in Nandini-Karmari beel (10.43) mainly due to very low capital investment in comparison to total revenue earned. In 40 cases the ratio is found in the range between 0.09 to 3.79 times of which in 4 cases it below the viable range (i.e. below 1) while in other 11 cases the ratio is found above 4.02 times. The average of all cases is found to be 3.203 times which indicates the viability of the gear from the economic point of view.

Rate of Return (ROR): Rate of return to capital should be 12% or above to become economically feasible. It is found in the viable range in all the beels with an average of 198% except Bhoispuri beel (10%).

Pay Back Period (PBP): A pay back period indicates the recovery period of the capital investment. When two projects are compared based on the pay back period (PBP) the one having less PBP is preferred over the others. Since, the objective here is not to find the preference of a gear over others, but to assess the feasibility of a particular gear, the feasibility has been assessed by comparing the PBP of a gear against the logically determined PBP (standard pay back period). The standard PBP is determined based on the physical life of the gear under consideration. Since, the physical life of the most of the gear is between 4 to 6 years, the study has considered 2 years as standard PBP for comparison purpose. The assumption is that original investment would be recovered within 2 years and earn the benefits in the remaining life of the gear after PBP. In case of musarijal the physical life is 4-6 years and hence the pay back period should be less than two years. As shown in table 4.1 in most of the cases (88.23%) the pay back is below 2 years. Only 11.77% of the total beel surveyed showed above 2 years. Hence, the recovery period of the capital investment musarujal is satisfactory. The average of PBP is found at 1.12 year, which indicates the viability of the gear.

Benefit-Cost Ratio (B-C Ratio): For economic viability, the B-C ratio should be more than or equal to one. In case of *musarijal* the ratio exceeds unity (1.21 to 35.49) in 50 beels (98.03%) and in only one beel (Dighali-patali) it is below the viable range

(0.9). In 39 cases the ratio is found below 10, in 5 cases in the range of 10 to below 20, and in 7 cases in the range of 20 to below 40 (fig. 4.1). The average value of the ratio is found to be 9.13, therefore, the gear may be considered economically feasible.

Net Present Value (NPV): The net present value (NPV) also should be equal to or more than one. The study reveals that the NPV of *musarijal* is positive in 50 beels (98.03%) of the total surveyed beels. But the gear exhibited a negative result in Dighali-patali beel (Rs.-5002/-). In 37 cases it is found from Rs.0 to below Rs.500000/-, in 7 cases from Rs.500000/- to below Rs.1000000/-, in 3 cases from Rs.1000000/- to below Rs.1500000/-, and in 3 cases from Rs.1500000/- to Rs.2000000/-. The average value is found to be Rs.416735/-, which indicates the economic viability of the gear.

Internal Rate of Return (IRR): It should be more than 12% to become economically feasible. In the case of musarijal it is found above 12% in 50 beels out of 51 (i.e. 98.03%) in the range from 22% to 724%. In Dighali-patali beel it is found below the viable range (9%). In 38 beels it is found from 0 to below 200%, in 7 beels from 200 to below 400%, in 3 beels from 400 to below 600% and in 3 beels it is found from 600 to below 800% (Fig.4.1). The average value is 174%, which is far above the viable range.

Net benefit Investment Ratio (N-K ratio): It should be more than or equal to one. In case of *musarijal* it is found within the economic viable range (1.49 to 48.7) in all the cases except Dighali-patali beel where it is 0.87. The N-K Ratio is found below 10 in 31 beels, from 10 to below 20 in 10 beels, from 20 to below 30 in 5 beels and from 30 to below 50 in 5 beels. The average of the ratio is found at 12.14, which suggests the over all viability of the gear.

Thus above analyses indicate that *musarijal* is economically feasible as far as the present sample survey is concerned. On the basis of B-C ratio and N-K ratio, it is clear that the gear is able to provide maximum benefits at least cost.

4.4.2 ECONOMIC ANALYSIS OF DOLIJAL

Dolijal or *Moijal* is a small trawl net used for dragging shallow waters and used during September to march. As far as the present study is concern the operation of *Dolijal* or *Moijal* has been found in only 8 (eight) beels out of 55 beels of Assam.

The economic evaluation (Table-4.2 and Fig. 4.2) of the net has been worked out with the same objective as mentioned earlier in this chapter and the result of analysis has been described under the following subheads:

4.4.2.1 Catch and Effort

The catch and effort record of *Dolijal* in different beels have been shown in table-4.2. From the record it has been ascertained that catch per day of *Dolijal* may range from 22.5 kg (Deora beel) to 95.0kg (Nandini beel). The lowest catch in Deora beel may be due to high density of vegetation. In Siligurijan beel the gear is operated only 90 days but Kalidanga beel enjoyed 210 days of operation. But total catch per annum is found to be maximum in Nandini beel (19000 kg) with 200 days of operation. The average catch is found to be 8574 kg with 141 days of operation. The CPGH is found in the range between 0.087 to 0.247 Kg with an average of 0.1354 Kg.

4.4.2.2 Capital Investment and Depreciation

The average acquisition cost for the operation of *Dolijal* is found maximum in Nandini beel with Rs.58000/-, which includes capital investment on boats and gears. On the other hand in Deora beel it is minimum with Rs.39000/- only as a capital investment. Depreciation of gear and boat accordingly are maximum in Nandini (Rs.8333.32) and minimum in Deora beel (Rs.5000/-). The average capital investment is Rs.48812/- with Rs.7569/- as its depreciation.

4.4.2.3 Total Cost

The total cost for operation of *Dolijal* is segregated into fixed costs and operational costs or variable costs. Fixed cost relates with the depreciation of boat and gear while variable cost includes labor cost, repair of gear and repair of boat.

Fixed costs: The fixed cost i.e. the depreciation of boats and gear has been illustrated under the sub head 4.4.2.2.

Variable costs: Variable costs or the total cost of operation is maximum in Kalidanga beel (Rs.130500) but Deora beel shows a minimum variable cost (Rs.47000/-) with an average of Rs75325/- in a year. In comparison to other beels, Siligurijan beel shows high operational costs i.e. Rs.75200/- in only 90 days of operation, which is due to engagement of more labors.

The total cost accordingly, ranges from Rs.47000/- (Deora beel) to Rs.108833/- (Nandini beel) with an average of Rs.82894/-.

4.4.2.4 Revenue

The data on catch in terms of quantity and value realized were observed on daily basis and calculated for per annum in different beels. The fish was found sold at beel site to the middleman and average weighted fish value was found to be Rs.25/kg. The annual gross revenue earned by operating the *Dolijal* as shown in table-4.2, is found maximum of Rs.475000/-(Nandini beel) and minimum in Deora with Rs.67500/- with an annual average of Rs.214344/-.

4.4.2.5 Economic Viability

Using the information in the earlier part of analysis regarding various components of cost, life span of boat and gear, gross revenue on total catches and its price realized per kg the viability of investment has been worked out (Fig. 4.2).

Capital Turn Over Ratio (CTOR): The CTOR is found highest in *Nandini* (8.19 times) but lowest in *Jaluguti* beel (1.58 times) with an average of 4.229. The ratio should be equal to or more than one to become economically viable. In this case the gear is found above the viable range in all the beels. Moreover, it is found below 2 times in 3 beels and from 2 to below 10 in 5 beels.

Rate of Return (ROR): The ROR to the capital is better in *Kalidanga* beel (521%) while in *Jaluguti* it is very poor (28%) with the average of 254%. The ratio should be 12% or more to become economically viable. In this case the gear is found viable in all the beels showing a very high ROR.

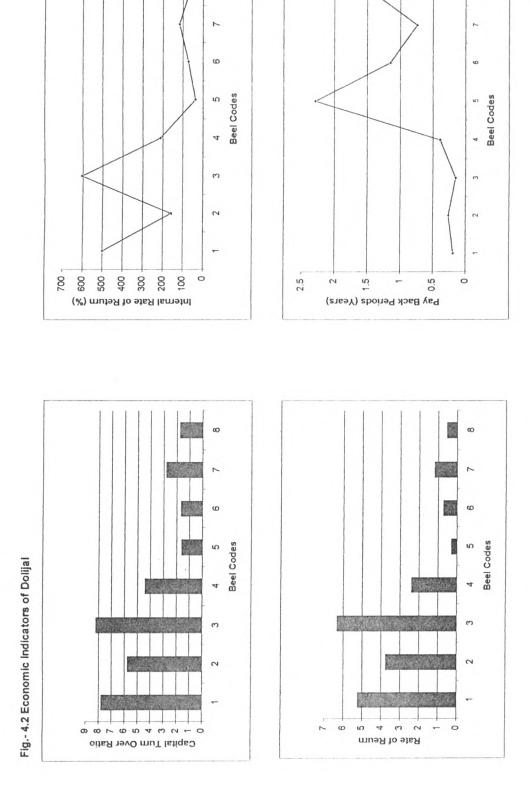
Pay Back Period (PBP): For economic viability, the PBP should be less than 2 years. The study indicates that out of 8 beels in 7 beels the PBP is economically viable, which is found between 0.19 to 1.53 years. But in one case (i.e. Jaluguti beel) the PBP is found 2.29 years. The annual average PBP is found 0.84 years, which indicates the over all viability of the gear. (vide page no.80)

Benefit-Cost Ratio (B-C Ratio):In the case of *dolijal* B-C ratio is found above the feasible range i.e. one, in all the samples under study and ranges in between 1.71 (Jaluguti beel) to 31.67 (Nandini beel) with an average of 11.03 times. In Kalidanga and Nandini beel the ratio shoots up to 25.89 and 31.67 respectively, which indicates higher viability of the gear in these beels.

Net Present Value (NPV): The net present value (NPV) also should be equal to or more than one. The study reveals that the NPV of *dolijal* is positive in all the beels. In

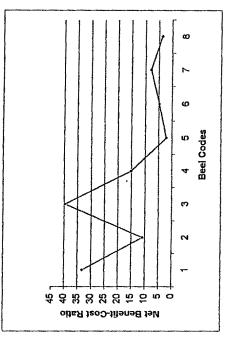
5 cases it is found from Rs.0 to below Rs.500000, in 1 case from Rs.500000 to below Rs.1000000, and in 2 cases from Rs.1000000 to below Rs.2500000/-. The average value is found to be Rs.711699/-, which indicates the economic viability of the gear.

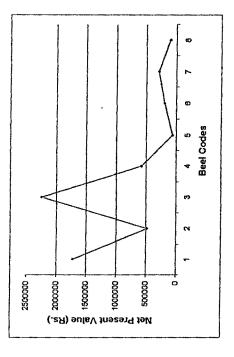
Internal Rate of Return (IRR): It should be more than 12% to become economically feasible. In the case of *dolijal* it is found above 12% in all the cases and ranges from 37% (Jaluguti beel) to 604% (Nandini beel). In 5 beels it is found from 0 to below 200%, in 1 beel from 200 to below 400%, and in 2 beels from 400 to 604% with an average of 220%.


Net benefit Investment Ratio (N-K ratio): It should be more than or equal to one. In case of *dolijal* it is found within the economic viable range (2.13 to 39.71) in all the cases. The N-K Ratio is found below 10 in 4 beels, from 10 to below 20 in 2 beels, and from 20 to below 40 in 2 beels. The average of the ratio is found at 14.68, which suggests the over all viability of the gear.

Thus above analyses indicate that *dolijal* is economically feasible as far as the present sample survey is concerned. On the basis of B-C ratio and N-K ratio, it is clear that the gear is able to provide maximum benefits at least cost.

Internal Rate of Return (IRR): Likewise, the IRR was recorded above 12% in all the sample sites, which ranged from 37 (Jaluguti) to 604 (Nandini).


Net benefit-investment Ratio (N-K Ratio): Similarly, the N-K ratio was found above the feasible range and ranged from 2.13 (Jaluguti) to 39.71 (Nandini).


Thus above analysis indicates that the gear is economically feasible and is able to provide sufficient benefits at least cost.



Contd.....

-									
NAME OF THE BEELS	Kalidanga	Hakama	Nandini	Siligurijan	Jalugut	Kasodhora	Kujibalipatti	Deora	
BEEL CODES		2	3	4	5	9	2	80	

,

4.4.3. ECONOMIC ANALYSIS OF BER JAL

Berjal (encircling gear) is also known as *borjal*, *tanajal*, *purjal* or *paonajal* and is an indigenous fishing gear of Assam. The fishing practices are done mostly during October to February, i.e. five months in a year; but their operation is more extensive and wide spread in comparison to other gears. Out of 55 beels surveyed, berjal is found to be used in 25 beels. Hence, the analysis was based on the data collected from 25 beels and the same is shown in the table-4.3.

4.4.3.1. Catch and Effort

The annual catch and effort data (Table-4.3) shows that *berjal* was operated from 80 days (Pungani, Ganak-Dubai-Duba and Botalikhosa) to a maximum of 190 days in a year (Baskandi) with an average of 106 days. The maximum total catch is 12065 Kg (Baskandi beel) while Dighalipatali showed the minimum catch record with just 2025 Kg with an average total catch of 3859 Kg. The CPGH, on the other hand, is found maximum in Nandini beel (0.236 Kg) and minimum in Tapang and Auti-bauti beels (0.074 Kg) with an average of 0.13 Kg. The result shows that the total annual catch does not necessarily depends on only CPGH but certain other factors also such as total number of days of operation, fish density, and so on.

4.4.3.2. Capital Investment and Depreciation

The average annual capital investment for the operation of berjal is Rs.43400/-, which is found maximum in Salchapra beel (Rs.77000/-) and minimum in Barundanga beel (Rs.24000/-). The differences in capital cost is mainly due to the size of the gear; number of boats used in operation and local rate of selling prices of crafts and nets. Accordingly, fixed costs (depreciation of boats and gears) is found to vary from Rs.3250/ (Barundanga) to Rs.12875/ (Salchapra) with the average of Rs.6711/- as shown in table-4.3.

4.4.3.3. Total Cost

The total cost in the operation of the gear can be broken down in terms of fixed and variable costs as described below:

Fixed Cost in this case is the depreciation of gears and boats only, which has been described in the earlier subhead (4.4.3.2).

Variable Cost includes wages of labor and repair and maintenance of boats and gears. It is found to be maximum in Baskandi beel (Rs.97600/) and minimum in Ganak-Dubai-Duba beel (Rs.27300/) with the average value of Rs.52738/-. The high fluctuation in total operational costs is mainly due to the number of labor engaged and number of total days of operation.

Thus, the total costs (variable cost + fixed cost) are found in between Rs.31176.66 (Ganak-Dubai- Duba) and Rs.109600/ (Baskandi beel) with an average of Rs.59449/-. The relevant cost figures are shown in table-4.3.

4.4.3.4. Total Revenue

The data on catch in terms of quantity and value realized were observed on daily basis and then calculated to annual basis. The fishes were found t be sold at beel site by the fishermen to the middlemen who carried them to market for retail sale. The average prices of fish species were much lower at the beel site in comparison to market and it did not exceed Rs.25/Kg.

The total revenue has been calculated based on the catch recorded by fishermen and the selling price at the beel site during fishing period. Accordingly, the total revenue per annum on operation of *berjal* is found between Rs.43875/ (Rani megna) to Rs.301625/ (Baskandi) per annum with the average value of Rs.96760/-.

87

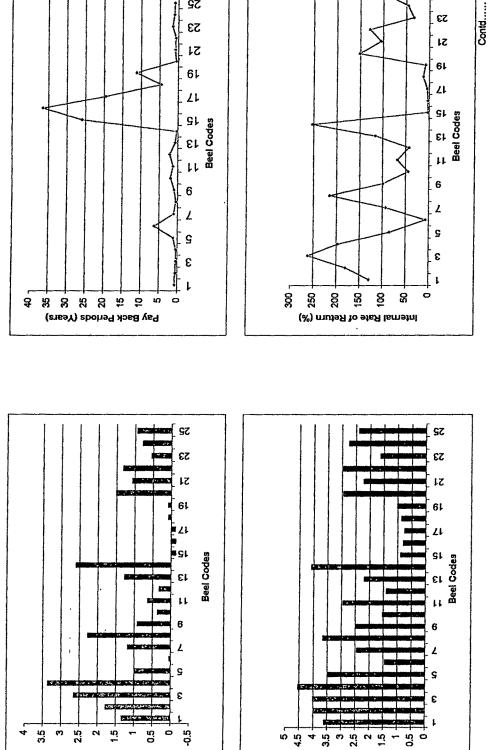
4.4.3.5. Economic Viability

Based on the analysis of various cost components, life expectancy of boat and gear, gross revenue from their operation, viability of investment has been worked out using the seven criteria mentioned earlier. The relevant parameters regarding economic viability of *berjal* have been described below:

Capital Turn Over Ratio (CTOR): The capital turn over ratio i.e. the income generated for each rupee invested in berjal operation varies from 0.75 times (Digar bakri) to 4.54 times (Harinchora) with an annual average of 2.437 times (Fig.-4.3). Higher the capital turn over ratio, higher is the efficiency with which the fishermen are using the gears. Since, in most of the cases (21 out of 25 samples, i.e. 84%) in the operation of *berjal*, the capital turn over ratio is more than one, the gear may be considered to be an efficient gear.

Rate of Return (ROR): An investment is considered to be financially viable if the rate of return is more than cut off rate. Generally, the cut off rate is 12% as suggested by the planning commission. The average rate of return in the case of *berjal* is more than 12%. Hence the gear may be considered as financially viable. There are, however, few exceptions are also recorded during investigatioin. The rate of return is found negative in three samples (Auti bauti, Tapang, and Digarbakri); and in another three beels (Bhoispuri, Rani megna and Gopharchang), it is less than 12%.

Pay Back Period (PBP): Pay back period indicates the recovery period of the capital investment. A gear may be considered to be feasible if the pay back period is much lesser than the life of the gear. In case of *berjal* life span is 4 years, and hence the pay back should be less than 2 years. As shown in table-3 in most of the cases (70%) pay back period is below 2 years. Hence, the recovery period of the capital investment is satisfactory. But the exceptions were recorded in seven beels (30 %) where pay back period was above 2 years. The average PBP is found to be 4.86 years, which indicates


that in over all cases the gear is not viable as far as the pay back period analysis is

concerned! (vide page no.80) relat (Phip) many functions of the process of the pr

Net Present Value (NPV): The NPV or Net Present Worth (NPW) should be more or equal to zero. The NPV of berjal is found financially viable in most of the cases (80%) except in Bhoispuri (Rs.-7911/-), Auti-bauti (Rs.-80498/-), Tapang (Rs.-86795/-), Digrbakri (Rs.-73891/-) and Gopharchang (Rs.660657/-) where NPV showed a negative trend. The average NPV is found to be Rs.182525/-, which indicates the over all viability of the gear.

Internal Rate of Return (IRR): The internal rate of return (IRR) should be more than 12% to become economically feasible. In the case of *berjal* it is found above 12% in 23 samples out of 25 cases except Bhoispuri (7%) and Gopharchang (8%). The average value of IRR is found to be 95%, which indicate the over all viability of the gear.

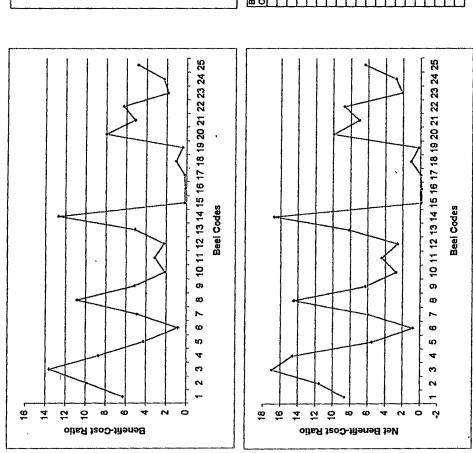
Net benefit-Investment Ratio (N-K Ratio): The net benefit investment ratio (NKR) also should be more than or equal to one. In case of *berjal* the N-K ratio is found within the economic viable range i.e. from 1.04 (Rani-megna) to 16.99 (Nandini beel) in 20 cases out of 25 cases. But in two cases like Bhoispuri (0.79) and Gopharchang (0.21) the ratio is found below the viable range. Moreover, in three cases such as Autibauti (-0.11), Tapang (-0.17), Digarbakri (-0.04), the ratio is found to be negative. The average value of the ratio is found to be 6.29, which indicates the over all viability of the gear.

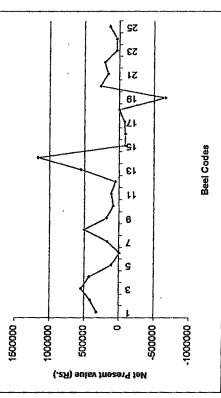
SS

5.0 o

-

oiteR nevo mu't letiqeD




ิณ ที่ ***

muter to etch

4

î[52

NAME OF THE BEELS	Ganak- D Duba	Botalithosa	Bihdia	Telecance	Mondidow															
BEEL CODES	21	ផ	R	2	82															
NAME OF THE BEELS	Kaldanga	Hakema	Nendri	Harinchora	Barudanga	Bholspuri	Jogra	Chandaktrai	Desper	Thekera	Satiyan	Dighel-patel	Salchapra	Beskand	Aut-Beut	Tapang	Diger-Baioi	Ran-Megan	Gopharchand	Pungari
BEEL CODES	-	2	3	4	5	8	4	8	Φ	10	11	12	13	14	15	16	17	18	19	8

Fig.-4.3 Economic Indicators of Berjal.

ŧ

Thus from the above economic analysis it is evident that *Berjal* is economically feasible as far as the present sample study is concern. Moreover, from the study of B-C ratio and N-K ratio it is clear that the gear can provide maximum benefit at least cost. Therefore, the use of *Berjal* may be encouraged.

4.4.4 ECONOMIC ANALYSIS OF PHANSIJAL

It is a rectangular gill net provided with head and footropes. Generally the footrope is devoid of sinkers. *Phansijals* are made of nylon or cotton and mostly operated as surface set. The gear is found to be used extensively (52 beels out of 55 total surveyed beels) in the beel fisheries of Assam for commercial purposes. An attempt has been made to evaluate its economic viability (Table-4.4) with the same objectives as mentioned earlier in this chapter. The different economic parameters as evaluated (Fig. 4.4) has been described below:

4.4.4.1 Catch and Effort

The operation of *phansijals* ranges from 60 days (Sibnarayanpur) to 210 days (Siyalekhaity and Gopharchang) with an average of 139 days. The total catch per year is found in Pungani beel with 910 kg but it is only 225 kg in Sibnarayanpur. The average catch in year from the operation of *phansijal* is found to be 497.5 Kg. The CPGH is on the other hand found minimum in Tapang beel (10.05 Kg) and maximum in Botalikhosa beel (0.222 Kg) with an average of 0.10786 Kg. The study reveals that the total annual catch does not necessarily depend on the CPGH value.

4.4.4.2 Capital Investment and Depreciation

The capital investment in acquisition of *phansijal* along with boat ranges from Rs.3800/- (Barundanga) to Rs.6000/- (Siligurijan) with an average of Rs.4910/-.

Accordingly, Barundanga shows a minimum depreciation of Rs.366.66, but the maximum depreciation is found in Auti-Bauti (Rs.958.32) against a capital investment of Rs.5500/- instead of Siligurijan beel (Rs.777/-). This is due to the longer life expectancy of gears in Siligurijan beel in comparison to Barundanga beel.

4.4.4.3 Total Cost

The total cost in operation of *phansijal* has been segregated into two fixed cost and variable costs, which are as follows-

Fixed cost: The fixed cost in the operation of *phansijal* is the depreciation of boats and gears, which has been described under Capital Investment and Depreciation.

Variable cost: It is also called as total operation cost and includes wages of labor and repair and maintenance of crafts and gears. Variable cost for *phansijal* ranges from Rs.4250/-(Nandini) to 17,300/-(Gopharchang) with an average of Rs.7197/- in a year. The vast difference in variable cost is due to variation in number of labors employed and number of days of operation.

The total cost, i.e., fixed cost and operating cost is found between Rs.4783/- (Nandini beel) to Rs.17808/- (Gopharchang beel) with an average of Rs.7612/-.

4.4.4.4 Revenue

The data on catch in terms of quantity and value realized were observed on daily basis and calculated for per year according to the number of days of operation in different beels of Assam. The fish values were calculated by taking the average weighted value of different fish species set by the middlemen at beel site. The total revenue from the operation of the net is found maximum of Rs.20, 020/- in Pungani beel. But Sibnarayanpur exhibits a poor revenue of just Rs.4, 950/-. The total revenue from the operation of phansijal shows a great fluctuation due to the fact that the total catch is too high in Pungani beel (910 Kg) in comparison to Sibnarayanpur (225 Kg). Moreover, the number of operating days in Sibnarayanpur is also very less (60 days) in comparison to Pungani beel (130 days).

4.4.4.5 Economic Viability:

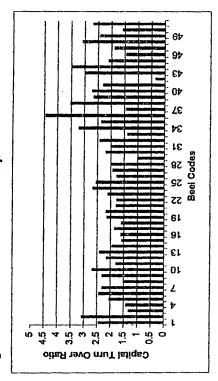
Using the relevant data, which were recorded at beel site, economic viability in the operation of *phansijal* has been worked out for different beels of Assam and shown in Table -4.4 and Fig. 4.4.

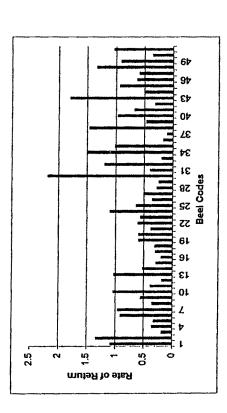
(i) Capital Turn Over Ratio (CTOR): From the economic analysis it is observed that the capital turn over ratio (COTR) i.e. the income generated for each rupee invested is higher in Gopharchang beel (4.45 times) in comparison to other beels. In 2 beels it is found below the viable range while in other 49 beels found above the unity with an average of 2.16 times. The ratio is found above 3 times in 7 beels but in most of the beels (42 beels) it is found between 1 to 3 times, which indicates the viability of the gear.

(ii) Rate of Return (ROR): The rate of return to capital is found better in Baskandi (218%) due to its low capital investment in relation to profit after tax generated. It is found below 50% in 21 beels, from 50 to below 100% in 17 beels, from 100 to below 150% in 11 beels and from 150 to below 250% in 2 beels. The average ROR is found to be 67.8%, which indicates an over all viability (12% or above) of the gear from the economic point of view.

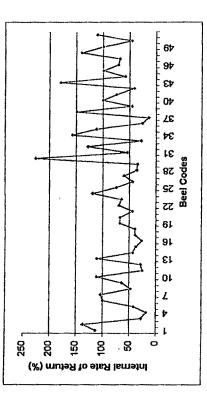
(iii) Pay Back Period (PBP): It is found in between 0.43 (Baskandi beel) to 5.92 years (Bihdia beel). To become economically viable it should be below 2 years. In maximum beels (31numbers) the PBP is found below 2 years while in other 20 cases

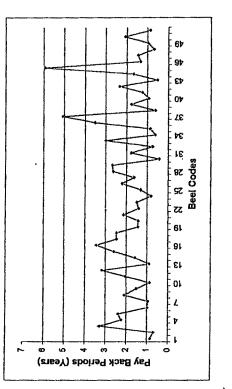
it is found to be above the viable range. The average PBP is found to be 1.80 year, which suggests the economic viability of the gear. (vide page no.80)

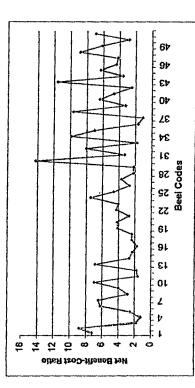

(iv) Benefit-Cost Ratio (B-C Ratio): The benefit-cost analysis in case of *phansijal* is found within the feasible range i.e. above the unity and is found between 1.09 (Pungani beel) and 13.03 (Autibauti beel). Out of 51 cases in 33 cases the ratio is found up to 5 and in another 18 cases it ranges from 5 to below 10. Moreover, in one beel (Auti-bauti) the ratio is found above 10 (Fig-4.4). The average of the ratio is 4.29, which indicates the economic viability of the gear.

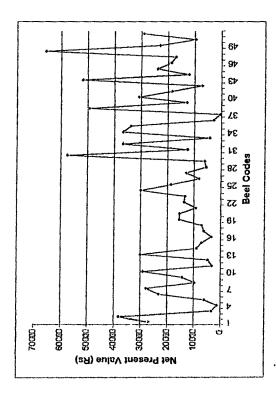

(v) Net Present Value (NPV): It should be zero or above to become economically viable, which is found positive in all the cases under study. In most of the beels (33 numbers) it is found up to Rs.20000/- whereas in 14 beels it is in the range of Rs.20000/- to Rs.40000/-. In 3 beels the NPV is found in the range of Rs.40000/- to Rs.60000/- but in one beel it is above 60000/- (Fig-4.4). The annual average of NPV is found to be Rs.18720/-, which suggests the viability of the gear.

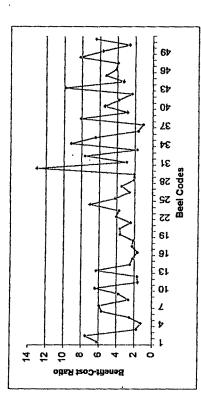
(vi) Internal Rate of Return (IRR): It should be 12% or above to become economically viable. Fig-1 shows that out of 51 beels in 21 beels the IRR is up to 50%, in 14 beels it is up to 100%, in 12 beels it is up to 150%, in 3 beels it is up to 200% and in only one beel it is found above 200%. The average IRR of 51 beels is found to be 74.8%, which supports the viability of the gear.


(vii) Net benefit-Investment Ratio (N-K Ratio): The N-K ratio should be one or more to become economically feasible, which is found above the viable range in all the beels under study. In maximum beels (33 numbers) the ratio is found up to 5 whereas in in 16 beels it is found up to 10. Moreover, in two beels the ratio is found above 10. The annual average of the ratio is found to be 4.72, which indicates the economic feasibility of the gear as far as the present study is concern.




3




Contd.....

.

Г		Γ	Г	Γ	Г	Г	Г	Γ	T	Г	Γ	1										
NAME OF THE	BEELS	Tinsueborbi	Moricisoi	Botalikhosa	Bihdia	Telecance	Moridikhow	Batha	Mailata-Dioting	Reuman	Gathia											
BEEL	CODES	\$	4	\$	46	47	\$	49	8	51	52		-	-	r	- -	r–	r-	r	r	-	1-
NAME OF THE	BEELS	Udan	Nandin-karmari	Lakhanabandha	Satyan	Siyalekharty	Olghali-patal	Brahmamaijan	Seichapra	Sibnarayanpur	Baskand	ALE-DBLE	Tepeng	Digar-bakn	Ren-megna	Sagar	Gopharchang	Angang	Pungani	G D oubs	IG B Jccora	Mericiaberia
BEEL	CODES	22	23	24	25	26	27	28	8	8	31	32		ह	8	86	37	8	8	4	41	42
NAME OF THE	BEELS	Kalidanga	Hakama	Nandri	Hannchora	Barundanga	Bhoispuri	Jogra	Chandakhal	Sagamara	Borbila	Botua-kamakhya	Sitgurian	Deepar	Solmari	Mort	Bormon	Jehout	Kasodhora	Kujbalpatt	Dears	(Thekera
BEEL	CODES	+	2	3	4	5	8	7	8	8	10	11	12		14	15	18	17		19	8	21

,

Thus from the above economic analysis it is evident that *phansijal* is economically feasible as far as the present sample study is concern. Moreover, from the study of B-C ratio and N-K ratio it is clear that the gear can provide maximum benefit at least cost. Therefore, the use of *phansijal* may be encouraged.

4.4.5 ECONOMIC ANALYSIS LANGIJAL

Langijal (gill net) is a rectangular net, which is provided with head and footrope. Unlike *phansijal*, generally it is provided with sinkers. Langijal is used extensively in the beels of Assam for commercial purposes; therefore, an attempt has been made to evaluate its economic viability (Table – 4.5 and Fig. 4.5).

4.4.5.1 Catch and Effort

The total days of operation of *langijal* in a year is found maximum in Sone beel (270 days) with a maximum catch record per annum (1215 Kg.). But catch per day record shows better in Jaluguti and Kasodhora beel with 7.0 Kg. On the other hand though Borbilla also enjoyed 270 days of operation but the total catch/year is only 756 Kg with 2.8 Kg/day catch. The annual average catch in a year is found to be 547 Kg in 147 days of operation.

4.4.5.2 Capital Investment and Depreciation

The study reveals that the capital investment to operate the gear may range from Rs.3850/- (Lakhanabandha beel) to Rs.5600/- (Tapang) with an average of Rs.4636/-. Accordingly, the depreciation is found to be minimum in Lakhanabadha (Rs.391.66) and maximum in Tapang (Rs.689.28). In Solmari beel the capital investment is found very low in comparison to other beels (Rs.250/-), because the fishermen need no boat for the operation of the gear, hence, the depreciation is also just Rs.125/- in a year.

4.4.5.3 Total Cost

The total cost in operation of *langijal*, which includes the fixed cost and variable costs or the operating cost has been studied $\tilde{\gamma}$ annual basis.

Fixed Cost: In case of *langijal* fixed cost includes only the depreciation of crafts and gears, which mainly depends on the capital investment that has been described under the sub head 4.4.5.2.

Variable Cost: Variable costs or the total operational costs, which includes the wages of fishermen, and the repair and maintenance of gears and boats, range from Rs.4391.43 (Teliadanga) to Rs.22500/- (Sone) with an average of Rs.8142/-. High fluctuation of variable costs has been observed in different beels due to differences in the number of days of operation and the numbers of labors employed for fishing.

Thus, the total cost, which includes both the depreciation and variable costs, is found to be maximum of Rs.22958/- in Sone beel, while it is observed minimum of Rs.5280/- in Teliadanga beel with the average of Rs.8661/- in a year.

4.4.5.4 Revenue

The fishes sold at beel site and $^{aba}_{A}$ carried to the market by middlemen. The average weighted price of fishes did not exceed Rs.22/Kg at beel site. A maximum record of total revenue of Rs.26730/- is recorded in Sone beel but is found minimum of Rs.5280/- in Teliadanga beel with an average of Rs12079/-. The lower revenue generation in Teliadanga beel is mainly due to less number of operating days (80 days) in a year.

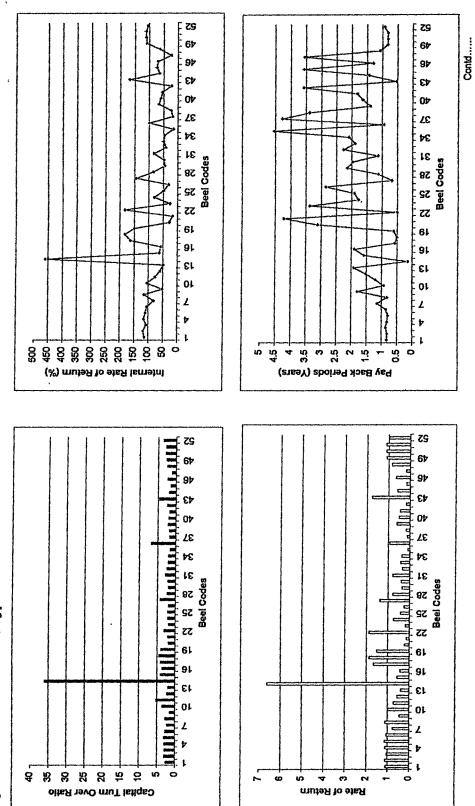
4.4.5.5 Economic Viability

Economic viability of *langija*l has been worked out by using the relevant data recorded during field study. Table-4.5 shows the important economic parameters, which have been worked out for different beels.

(i) Capital Turn Over Ratio (CTOR): The capital turn over ratio is found better in Sone beel with 6.68 times but minimum in Teliadanga beel with 1.04 times. It shows the viability (above unity) of the gear in all beels with an average of 3.23 times. The ratio is found below 5 times in most of the beels (49 beels) but in Sone beel it is above 6 times. Moreover, the ratio is found very high in Solmari beel (36 times) due to low capital investment in comparison to other beels (fig-4.5).

(ii) Rate of Return (ROR): An investment is considered to be financially viable if the rate of return is more than cut off rate. Generally, the cut off rate is 12% as c(1984) suggested by the planning commission. It is found in between 9% (Ranimegnna beel) and 187% (Kasodhora and Udori beel) with an average of 85%. The exception is found in the case of Solmari beel where it is 660% due to very low capital investment.

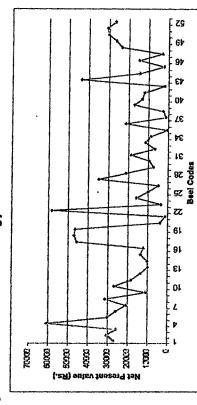
(iii) Pay Back Period (PBP): Pay back period indicates the recovery period of the capital investment. A gear may be considered to be feasible if the pay back period is much lesser than the life of the gear. In case of langijal life span is 4 years, and hence the pay back should be less than 2 years. As shown in table-4.5 in most of the cases (40 beels) pay back period is below 2 years. But in 12 beels it is found to be above 2 years. The average PBP is found to be 1.68 years, which indicates that in over all cases the gear is economically feasible as far as the present study is concern. (vide page no.80)


(iv) Benefit-Cost Ratio (B-C Ratio): For economic viability, the B-C ratio should be more than or equal to one. In this case the ratio exceeded unity in all the cases. It is found to be maximum in Udori beel (9.88) and minimum in Rani-megna beel (1.11) with an average of 4.57. The ratio is found up to 5 in 32 beels out of 52 total surveyed beels, whereas in 19 beels it is found up to 10. In one exceptional case i.e. in Solmari beel, it is found to be 17.04 (fig-5).

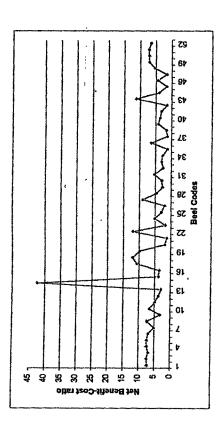
(v) Net Present Value (NPV): The NPV or Net Present Worth (NPW) should be more or equal to zero. The NPV in the case of *langijal* is found financially viable in all the cases, which is found in the range between Rs.628/- (Rani-megna) and Rs.60849/- (Harinchora beel). As shown in fig.4.5 the NPV is found below Rs.2000/in 30 beels, from Rs.2000/- to below Rs.4000/- in 15 beels from Rs.4000/- to Rs.6000/- in five beels and finally, Rs.6000/- or above in only one beel. The average NPV is found to be Rs.19417/-, which indicates the over all viability of the gear.

(vi) Internal Rate of Return (IRR): The internal rate of return (IRR) should be more than 12% to become economically feasible. In the case of *langijal* the maximum IRR is recorded in Solmari beel (460%) due to its very low capital investment. On the other hand the minimum value is recorded in Ranimegna beel (15%) due to its very low revenue generation. The average value of IRR is found to be 86%, which indicate the viability of the gear.

(vii) Net benefit-Investment Ratio (N-K Ratio): The net benefit investment ratio (NKR) also should be more than or equal to one. In case of *langijal* the N-K ratio is found within the economic viable range i.e. from 1.14 (Rani-megna) to 12.06 (Kasodhora beel) with an average of 5.74. Fig.4.5 indicates that in most of the cases (46 beels) the ratio is found below10; in 5 beels it is recorded in the range of 10 to below 20; but in one case i.e. Solmari beel the ratio is found above 40.


Thus from the above economic analysis it is evident that *langijal* is economically feasible as far as the present sample study is concern. Moreover, from the study of B-C ratio and N-K ratio it is clear that the gear can provide maximum benefit at least cost. Therefore, the use of *langijal* may be encouraged in the beel fisheries of Assam. In the case of Solmari beel all the economic parameters show very high range of




•

1

NAME OF THE NEELS Faldanga Hakama Nandrin Bururdanga Bururdanga Bururdanga Bururdanga Bururdanga Bururdanga Bururdanga Sugaraha Deepar Nasoona Much Much Nasoona Nasoo	NAME OF THE BEEL	ICOUES BEELS CODES BEELS	22 Udori 43 Trisul-borbi	Nandin-kaman 44	Lakhanabandha 45	Settren 46	atv 47	Digtrat-petrat 48	Brahmamaujan 48	Salchapra 50	Slorareverour 51	Baskand 1 52	Auth-baud	Γ		35 Ran-mora	Г	Γ	Г	38 Puncari	Γ	41 Gordmet+B Jocore	
	NAME OF THE	DEELS	Kaldanga	Hekama	Nandni	Hannchora	Berndanga	Bhoispurt	Jogra	Chandakhai	Segamera	Borbille	Botus-kemakhya	Sigurian	Deeper	Solmari	Mori	Bormon	Jabout	Kesodhore	Kujbalpatt	Decre	

Fig.- 4.5 Economic Indicators of Langijal

viability because the capital investment is found very low in comparison to other beels. As the beel is very shallow the fishermen need not to use boat for the operation of this gear.

4.4.6 ECONOMIC ANALYSIS OF KHEWALIJAL

Khewalijal or '*Asrajal*' is the commonest form of net used all over the state. The net is operated mostly in shallow water and boat may or may not be used. The economic analysis (Table-4.6) of *khewalijal* has been worked out for 52 beels with the same objective as mentioned earlier in this chapter and is described below:

4.4.6.1 Catch and Effort

Khewalijal is observed to be operated from 60 days (Sibnarayanpur) to 270 days (Siyalekhaity, Baskandi and Sone beel). The maximum catch per day is recorded as 12.5 Kg in Udori beel followed by 8.0 Kg in Moridikhow beel. But in other beels the catch per day was recorded between 1.5 (Satiyan beel) to 6.5 Kg (Bormonoha and Jaluguti beel). Thus, the annual catch record has been calculated to be the maximum of 1350 Kg (Sone beel) whereas a minimum of 180 Kg (Raumari) with an average of 505 Kg in 149 days of operation in a year. But in Udori beel the total catch is much higher (1625 Kg) in comparison to other beels.

4.4.6.2 Capital Investment and Depreciation

The total acquisition cost or the capital investment for *khewalijal* is found between Rs.4100/- (Lakhanabandha) to Rs.7000/-(Siligurijan) with an average of Rs.5250/-. In certain cases like Brahmamaijan, Deora, Nandini and Bhoispuri beel no boat was needed for the operation of the gear, hence, their capital investment is very low and is found Rs.950/-, Rs.900/- and Rs.800/- respectively. In the cases where boat was required the depreciation is recorded a maximum of Rs.1000/- (Siligurijan beel) and a

minimum of Rs.424.99 (Lakhanabandha). On the other hand where no boat was required the fixed cost is negligible and ranged between Rs.228.57 (Nandini and Bhoispuri) to Rs.271.42 (Brahmamaijan). The average depreciation is found Rs.520/-in a year.

4.4.6.3 Total Cost

The total cost of operation of the gear can be broken down into fixed cost (depreciation) and variable costs, which are described below:

Fixed cost: As has been described in 4.4.6.2.

Variable cost

The variable costs differ greatly to the differences in the number of operating days. Thus, the total operating costs of *khewalijal* is recorded as maximum in Sone beel (Rs.22500/- whereas Sibnarayanpur shows a minimum operating cost (Rs.3000/-) with an average of Rs.7548/-. Accordingly, the total cost is found as maximum of Rs.23105.94 and as minimum of Rs.3547.61 in Sone beel and Sibnarayanpur beel respectively. The annual average total cost for the operation of khewalijal is found as Rs.8069/-.

4.4.6.4 Revenue

The fishes sold at beel site and carried to the market by middlemen. The average weighted price of fishes did not exceed Rs.22/Kg at beel site. The total revenue earned from the operation of the gear is found between Rs.3960/- (Raumari and Sagmara beel) to Rs.35750/- (Udori beel) with an average of Rs.11207/-.

4.4.6.5 Economic viability

The relevant data for cost and return analysis was recorded at beel site to evaluate the economic viability of *Khewalijal*. All the relevant data on per day basis was recorded

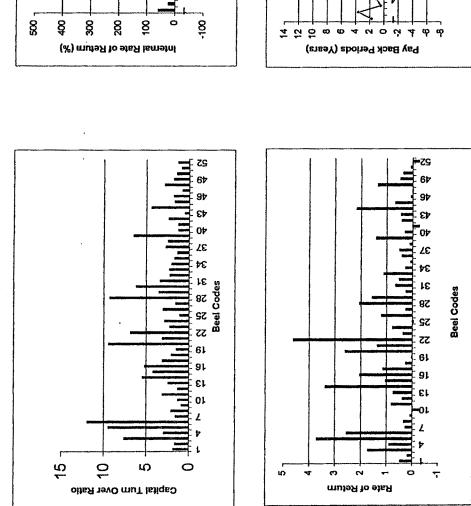
÷. .

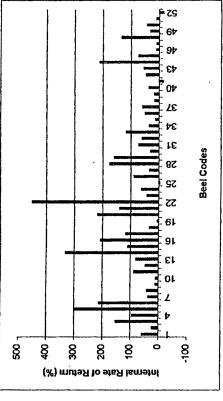
at beel site and then converted as per annum to find out the economic viability of *khewalijal*. The different economic indicators (Table-4.6 and Fig. 4.6) has been described below:

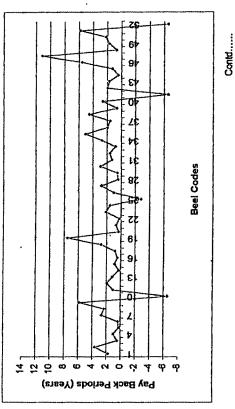
(i) Capital Turn Over Ratio (CTOR): The study shows a maximum of capital turn over ratio of 11.88 times in Bhoispuri beel, which is comparatively higher in comparison to other beels due to very low capital investment. On the other hand it is recorded a minimum of 0.78 times in Teliadanga beel. The average CTOR is found at 3.15 times in a year. The CTOR should be equal to or above the unity to become economically viable. In case of this gear the ratio is found above the unity in 48 beels out of 52 beels. In case of Sagmara, Tinsuli borbil, Teliadanga and Raumai beel the raio is found below the viable range. Out 48 beels in 17 beels the ratio is recorded from one to below 2 times, whereas in 19 beels the ratio is found from 2 to below 4 times. Moreover, in 12 beels the CTOR is found from 4 to below 12 (fig.4.6).

(ii) Rate of Return (ROR): The rate of return, which should be 12% or more to become economically viable, is found maximum in Udori beel (461%). Out of 52 cases (fig.6) the ratio is found above the economic viable range in 41 beels. But in six cases like, Sagmara (6%), Kujibalipatti (2%), Rani-megna (7%), Angang (9%), Bihdia (5%), and Raumari beel (6%) the ratio is recorded below the viable range. Moreover, in five cases like Satiyan (-4%), Borbilla (-26%), G.B.Jopora (-26%), Teliadanga (-2%), and Gathia beel (-26%) the rate of return is found to be negative. The annual average ROR is found to be 86%, which is of course above the viable range.

(iii) Pay Back Period (PBP): The pay back period shows a positive indication of the operation of *khewalijal* in most of the cases (32 beels out of 52) where it is found below 2 years (fig.4.6). But in another 20 cases it is recorded above 2 years. The average PBP is found 12 years, which is found to be economically not viable as far as the analysis of PBP is concerned, (vide page no.80)

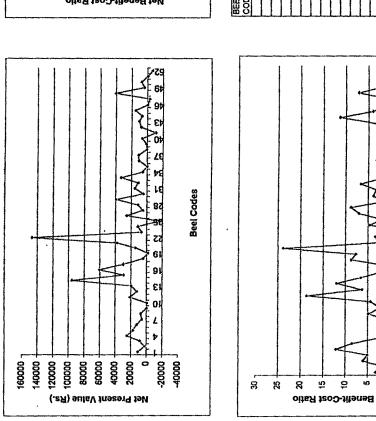

(iv) Benefit-Cost Ratio (B-C Ratio): The B – C ratio exceeded unity in 43 samples (82.69% of the total surveyed beels) but in 9 cases it is recorded below the feasible range of which in three cases like, Satiyan (-2.21), G.B.Jopora (-1.23), and Gathia beel (-1.15) show a negative result of the use of the net. Out of 43 beels, where the ratio is recorded within the viable range, in 26 beels the ratio is found between 1 to below 5, in 12 beels it is from 5 to below 10 and in another 4 beels the ratio is recorded from 10 to below 25 (fig.4.6). The annual average of B-C Ratio is found to be 4.37, which shows the over all viability of the gear in the beel fisheries of Assam.

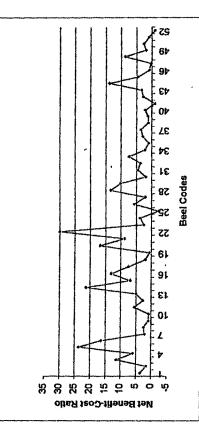

i


(v) Net Present Value (NPV): The NPV is also found within the feasible range in 82.69% (43 beels out of 52 surveyed beels) of the total cases under study, whereas in 9 cases, like Sagmara (Rs.-413/-); Borbilla (Rs.-780/-); Kujibalipatti (Rs.-1878/-); Satiyan (Rs.-15652/-); G.B.Jopora (Rs.-11114/-); Bihdia (Rs.-485/-); Teliadanga (Rs.-3191/-); Raumari (Rs.-413/-); and Gathia beel (Rs.-6675/-) it is found as negative. The average NPV is found to be Rs.15606/-, which indicates the viability of the gear.

(vi) Internal Rate of Return (IRR): The IRR found within the feasible range in 43 cases out of 52 total surveyed beels. But in 9 beels it is found below 12% of which in three cases like Satiyan(-3.5%); G.B.Jopora (-14%); and Gathia beel (-15%) the IRR is found to be negative. Of the 43 viable cases in 27 beels the IRR is found from 12 to below 100%; in 8 cases it is from 100 to below 200%; in 5 cases it is from 200 to below 300%; in 2 cases the IRR is found from 300 to below 400%; and in one case (i.e. Udori beel) it is found to be 450%. The annual average IRR is found to be 84%, which indicates over all viability of the gear.

(vii) Net benefit-investment Ratio (N-K Ratio): The N-K ratio also shows the viability in 43 cases out of 52 total surveyed beels. But it is found below unity in the remaining 9 beels of which in three beels like, Satiyan (-2.29); G.B.Jopora (-1.09); and Gathia beel (-1.02) the ratio is found to be negative. Of the 43 viable cases in the maximum cases (24 beels) the ratio is found from 1 to below 5; in 9 beels from 5 to below 10; in 5 cases it is recorded from 10 to below 15; and in another 5 beels the





BEEL	INAME OF THE	BEEL	NAME OF THE	BEEL	NAME OF THE
CODES	BEELS	CODES	BEELS	CODES	BEELS
÷	Kalidang	22	Udori	\$3	Tinsukutoonti
2	Hakema	23	Nandini-kamari	4	Mondsca
9	Nandini	24	Lakhanabandha	45	Botalitrosa
4	Hargh	25	Setiyan	46	Bhda
5	Barn	26	Siyele	47	Teladanca
8	Brous	27	Dighai-patal	48	Mondkow
1	Jogra	28	Brahmamaijen	49	Batha
8	Chanda	8	Selchap	20	Mailata dofino
8	Segamara	8	Sibneray	51	Reunan
10	Borbita	31	Basks	52	Gatria
÷	B kamak,	32	Autheut		
	Silgun	æ	Tapang	.	
13	Deepar	*	Digerbakri		
14	Someri	8	Rammagra	.	
15	Mori	88	Sager	****	
16	Bormon	37	Gopher		
17	Jahrya	88	Angeng	*	
18	Kato	39	Sore	****	
18	Kuj	40	Rata	*	
20	Deora	41	Goroimari B Jopora	*****	
21	Thekera	42	Mericolabena		

[RS

LE

ÞE

8

ò

Beel Codes

•

ratio is found to be from 15 to below 30. The annual average of the ratio is found to be 5.66, which indicates the viability of the gear in most of the beel fisheries of Assam.

Thus from the study of economic viability analysis it is clear that the net may be used after proper study of the sample site which depend on the depth of the beel, vegetation density, fish density, types of fish species present in the beel and so on.

~

4.4.7 ECONOMIC ANALYSIS OF HOOK AND LINE FISHING

Hooks and line fishing was found to be operated in almost all beels of Assam under study. But for commercial purposes it was found to be operated in 49 beels. Only those fishermen of very poor socio-economic status used the gear for commercial purposes. The present study deals with the economic viability of the use of the gear (Table-4.7 and Fig.4.7).

4.4.7.1 Catch and Effort

Hooks and line fishing is found to be operated from 60 days (Thekera) to 270 days (Sone beel) with an average of 137 days in a year. The catch/day is found in between 1.0 Kg (Nandini karmari) to 4.5 Kg (Kalidanga). Thus the maximum catch per annum is found to be 720 Kg (Kalidanga) where as the minimum of 120 Kg (Thekera). The annual average total catch is 315 Kg with the average CPGH of 0.0622 Kg.

4.4.7.2 Capital Investment and Depreciation

The capital investment in acquisition of the gear is found to be maximum of Rs.4450/- (Moridisoi beel) and minimum of Rs.3250/- (Sibnarayanpur anua) with an average of Rs.3577/-. Accordingly, the depreciation is recorded as maximum of

Rs.433/- (Mori disoi) and minimum of Rs.90/- (Kalidanga) with an average of Rs.362/-.

4.4.7.3 Total Cost

The data on catch record and average weighted value of fish group was recorded on daily basis and then converted into per annum. The total cost in operation of hooks and line can be broken down as fixed cost and variable cost, which are described below:

Fixed cost: The fixed cost has been described under the subhead 4.4.7.2.

Variable cost: The variable costs, which include the labor costs and the costs required for the maintenance of gears and boats is found between Rs.2825/- (Thekera) to Rs.11250/- (Sone beel) with an average of Rs.5964/-.

Thus, the total cost, which includes depreciation and variable costs, is found as maximum in Sone beel (Rs.11612/-) and minimum in Thekera beel (Rs.3150/-). The annual average total cost is found at Rs.6329/-.

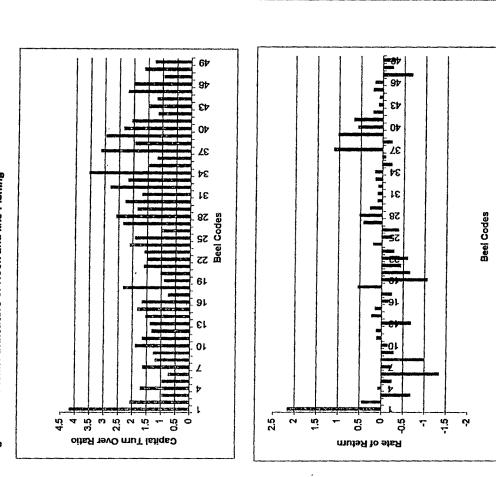
4.4.7.4 Revenue

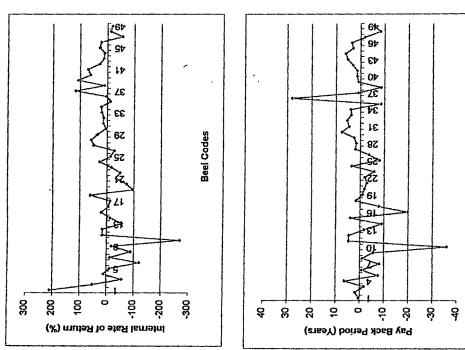
The fishes sold at beel site and carried to the market by middlemen. The average weighted price of fishes did not exceed Rs.18/Kg at beel site. From the study it is evident that the gear is able to earn gross revenue in between Rs.2400/- (Thekera) to Rs.14400/- (Kalidanga) with an average of Rs.6293/-per year.

4.4.7.5 Economic viability

The relevant data for cost and return analysis was recorded at beel site to evaluate the economic viability of *Hooks and line fishing*. All the relevant data on per day basis was recorded at beel site and then converted as per annum to find out the economic viability of the gear. The different economic indicators (Table-4.7) has been described below:

(i) Capital Turn Over Ratio (CTOR): The study of capital turn over ratio shows that 85.71% (42 beels out of 49) of the total surveyed beels exceeded the unity. But in 7 cases such as Nandini (0.94 times); Barundanga (0.94 times); Bhoispuri (0.72 times); Deora (0.73 times); Udori (0.88 times); Sibnarayanpur (0.99 times); and Batha (0.94 times) it is found below the feasible range. Of the 42 beels where the ratio is above the unity in 27 cases the ratio is found from 1 to below 2 times, in 12 cases it is from 2 to below 3 times, in 2 cases it is from 3 to below 4 times and finally, in only one case (Kalidanga beel) the ratio is found above 4 times. The annual average of the ratio is found at 1.76 i.e. just above the unity.

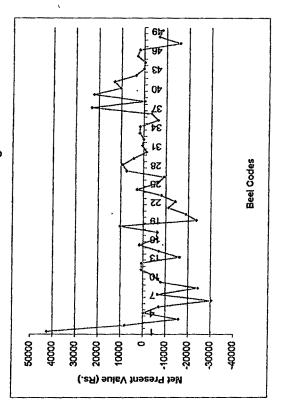

(ii) Rate of Return (ROR): The rate of return, which should be 12% or above to be economically feasible is found below the feasible range in 31 sample sites (i.e. 63.26% of the total surveyed beel). Fig-4.7 shows that out of 49 total surveyed beels the ROR is found negative in 23 beels. Moreover, the ratio is recorded from 0 to below 12% in 8 cases such as Harinchora (6%); Botuakamakhya (10%); Deepar beel (11%); Rani-megna (10%); Sagar (10%); Gopharchang (8%); Batha (9%); and Mailata-diplinga (7%). Out of 49 cases only in 8 cases the gear is found to be economically viable of which in most of the cases (19 beels) the ratio is recorded from 12 to below 50%. In another 7 beels the ROR has been found from 50 to below 200%. The annual average ROR is found to be negative (-1%), which indicates the inefficiency of the gear from the economic point of view.

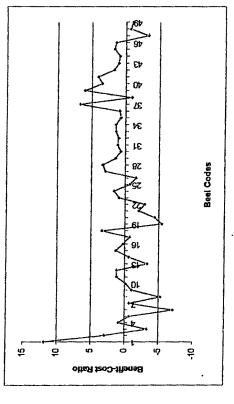

(iii) Pay Back Period (PBP): It is found above the viable range in only 9 cases (18.36% of the total surveyed beel) such as Kalidanga (0.46 year); Hakama (1.82 year); Thekera (1.55 year); Baskandi (1.97 year); Auti-bauti (1.63 year); Pungani (0.82 year); G.B.Jopora (0.88 year); Merkolaberia (1.52 year); and Tinsuliborbil (1.33 year). In 17 cases (34.69%) it is recorded above 2 years, which is not considered as feasible and in another 23 cases (46.94%) exhibited negative results of the use of the gear. (Negative pay back period means annual cash in flow of the e gears are negative in the entire life of the gear. Hence, the original amount invested is not recoverable in the lifetime of the gear. Therefore, the question of the pay back period does not arise in this case and the gears are not viable). (iv) Benefit-Cost Ratio (B-C ratio): The B-C ratio, which should be equal to unity to become feasible shows that the hook and line fishing is viable in only 22 cases (44.89%) where the ratio exceeded the unity and found below 5 in 19 beels, from 5 to below 10 in 2 beels and from 10 to below 15 in only one beel. In another 27 sample sites it is recorded below one of which 20 cases show the result in negative. The average of the ratio is also recorded below the economic viable range (0.44) indicating the inefficiency of the gear in the beel fisheries of Assam from the economic point of view.

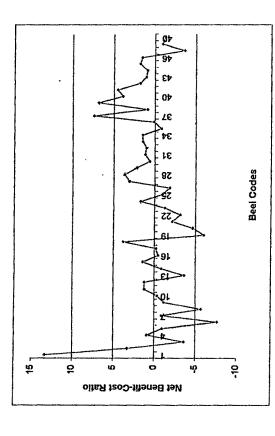
(v) Net Present Value (NPV): The NPV of Hook and line fishing (fig-4.7) is found above the economic viable range in 22 beels out of 49 total surveyed beels. It is recorded below Rs.10000/- in 17 cases, from Rs.10000/- to below Rs.50000/- in 5 beels. Of the negative cases in 18 beels the NPV is found up to Rs.-10000/- whereas in another 9 beels it ranges up to Rs.-30370/-. The average NPV is found to be Rs.-1985/-, which indicates the negative result of the use of the gear for commercial purposes.

(vi) Internal Rate of Return (IRR): The IRR study also depicts the same result by indicating that hook and line fishing is viable in only 22 sample sites. In another 27 cases it is recorded below 12%. Of the viable cases in 19 beels it is found below 100%, and in three beels it is found up to 200%. The average IRR is also found below the economic viable range (0.8%), which indicates the inefficiency of the gear from the economic point of view.

Contd.....


Beel Codes


,


•

.

÷

,

BEEL	NAME OF THE	BEEL	NAME OF THE	BEEL	NAME OF THE	Γ
CODES	BEELS	CODES	BEELS	CODES	BEELS	
	Kalidang	22	Styale	\$	B khosa	Γ
7	Hakama	ន	D petel	4	Binda	Г
ო	Nanctri	24	Bmaip	\$\$	T danca	Г
4	Harin	25	Seichap	48	M dittore	ſ
ъ	B danga	56	Sibnaray	47	Betta	Γ
8	Bhois	12	Baskand	48	M doine	Γ
7	Jogra	58	A baut	\$	Reuman	Γ
8	Chanda	82	D.bakri			1
8	Segmera	8	R megne			
10	Bortala	31	Sagar			
11	B.kamek	32	Gopher	r		
12	Deepar	8	Angeng	-		
13	Jahoo	\$	Sone	.		
14	Kasod	8	Rata	r		
15	Kup	ສ	Sartal	1		
18	Decra	1 37	Pungani	r -		
17	Thekera	8	G D dube	r		
18	Udori	8	G B Jop	1		
19	N karmar	\$	M beria	-		
ଷ୍ପ	Lbarda	41	T borbd	r		
5	Settren	42	M disol	,		

(vii) Net benefit-Investment Ratio (N-K Ratio): The net benefit investment ratio indicates that the gear is not feasible in 27 cases of which 22 cases show the result in negative. Of the viable cases in 19 beels the ratio is found up to 5 whereas in another 3 beels it is recorded up to 13.32. The annual average of the ratio is recorded 0.417, which suggest that the gear is not economically feasible in most of the beel fisheries of Assam.

Thus, from the above analysis it is evident that the gear is not able to provide benefits in relation to the costs incurred for the operation.

4.4.8 ECONOMIC ANALYSIS DHENKIJAL

It is a large triangular net stretched across two bamboos tied near the thick ends. The net is balanced in front of a bamboo platform raised in the bed of the beel about 6 feet above the level of the water from where the operation is done. Almost all kinds of fishes are caught in this net.

The economic efficiencies of *Dhenkijal* (table-4.8) has been worked out for 31 beels out of 56 total surveyed beels with the same objective as described earlier in this chapter. In another 15 beels data were not sufficient for the economic evaluation. The results of the analysis carried out for 31 beels have been described below:

4.4.8.1 Catch and Effort

Table – 4.8 shows the catch and effort data of *dhenkijal* which indicates that the maximum catch per year is 1530 Kg in Siyalekhaity beel with 180 days of operation. On the other hand the minimum catch per year is recorded as 240 kg in Brahmamaijan beel with 80 days of operation. In Bormonoha beel total number of operating days were 45 days but Siyalekhaity beel enjoyed 180 days of operation,

which is higher in comparison to other beels. The average fish catch is found to be 543.8 Kg in a year with an average of 92.3 days of operation.

4.4.8.2 Capital Investment and Depreciation

Total cost for *ghatjal* operation ranged from Rs.4700/- to Rs.8000/- with an average of Rs.5711/-. Accordingly, the depreciation of gear and boat is found to be maximum as Rs.1222/- (Siyalekhaity and Dighalipatali beel) and minimum as Rs.547/- (Moridisoi beel) with an average of Rs.787/- in a year.

4.4.8.3 Total Cost

The total cost for the operation of the gear has been segregated into fixed cost and variable costs, which are described below:

Fixed Cost: Fixed cost, which is also known as depreciation has been described under 4.4.8.2.

Variable Costs

Variable cost includes wages of labor and repair and maintenance of gear and boat. It is recorded with Rs.15050/- as maximum in Siyalekhaity beel where as Rs.4330/- in Bormononha beel with an annual average of Rs.8300/-.

Thus the total cost for the operation of *dhenkijal* is recorded maximum with Rs.16272.21 (Siyalekhaity) and minimum with Rs.4410.57 (Bormonoha). The average of the total cost is found to be Rs.9064/-, which includes the depreciation and variable costs.

4.4.8.4 Revenue

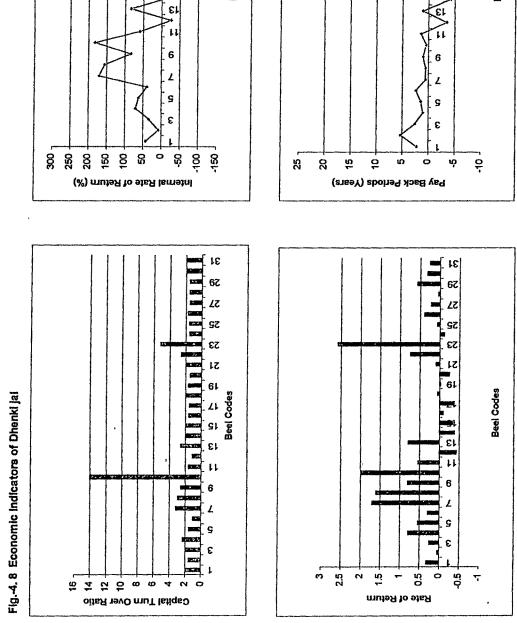
The data on catch in terms of quantity and value realized were observed on daily basis and calculated for per annum in different beels of Assam. The catch composition comprises of minor, intermediate and major groups of fish species and their average weighted values were recorded in between Rs.21/- to Rs.24/- at beel site. The gear is found to generate gross revenue in between Rs.5760/- (Brahmamaijan) to Rs.32130/- (Siyalekhaity) with an annual average of Rs.11687/-.

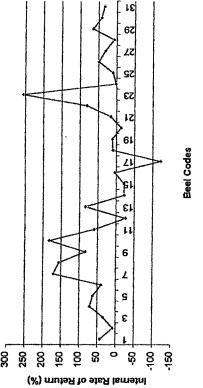
4.4.8.5 Economic viability

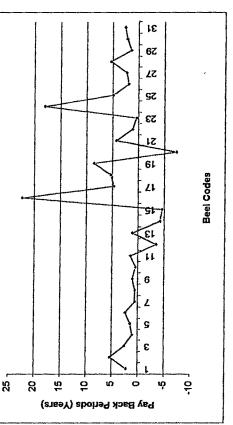
Economic viability of *dhenkijal* has been worked out by using the relevant data recorded during field study. Table-4.8 shows the important economic parameters, which have been worked out for different beels.

(i) Capital Turn Over Ratio (CTOR): The capital turn over ratio found between 1.02 times (Bormonoha) to 14.01 times (Siyalekhaity) with an average of 2.35 times, which indicates viability if the gear in all the beels under the present study. A fig-4.8 show that in maximum cases (19 beels) the ratio is found below 2 times, whereas in 10 cases it is from 2 to below 4 times. Out of 31 beels in one beel (Moridisoi beel) the ratio if recorded above 14 due to low capital investment against the revenue generation in comparison to other beels.

(ii) Rate of Return (ROR): The rate of return is found within the viable range in 20 beels. In another 11 beels (35.48% of the total surveyed beel) the rate of return is recorded below the feasible range of which 8 beels such as Brahmamaijan (-43%); Rani-megna (-38%); Sagar (-33%); Gopharchang (-9%); Anganng (-34%); Saitali (-2%); Pungani (-25%); and Botalikhosa (-12%) show the negative results as far as the study of ROR is concern. Of the viable cases (20 beels) it is found from 12 to below 50% in 8 beels, from 50 to below 100% in 7 beels, from 100 to below 200% in 3 beels and finally in one beel it is recorded the maximum at above 250%. The average

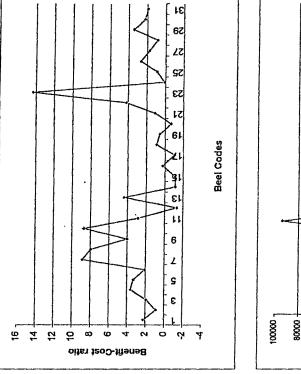

ROR is found to be 42%, which of course, shows the over all economic viability of the gear.

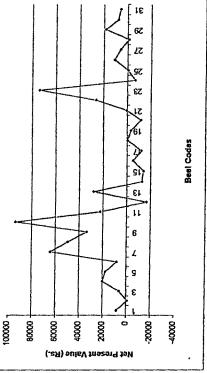

(iii) Pay Back Period (PBP): The pay back period, which should be below 2 years in this case is recorded below the viable range in 9 beels (29.03% of the total surveyed beels), which includes four negative results such as in the case of Brahmamaijan (-3.49); Rani-megna (-4.27); Sagar (-4.6); and Pungani (-7.35), (vide page no.80)

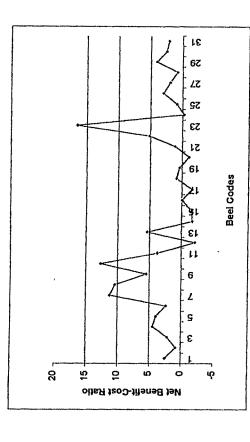

(iv) Benefit-Cost Ratio (B-C Ratio): The B-C ratio, which should be equal to or more than one is found within the feasible range in 61.29% cases of the total surveyed beels. In 12 cases it is found below the economic viable range of which 5 cases, such as Brahmamaijan (-1.31); Rani-megna (-1.14); Sagar (1.13); Angang (-1.04) and Pungani (-0.69), are found as negative. The ratio is found from 1 to below 4 in 12 beels whereas in 6 beels it is recorded from 4 to below 10. In one beel (Moridisoi) it is found as maximum (14.32) in comparison to other beels. The average of the B-C Ratio is found to be 2.6 in a year, which of course suggests the viability of the gear in over all cases.

(v) Net Present Value (NPV): The NPV, which should be positive, is recorded as negative in 12 beels out of 31 total surveyed beels. Of the viable cases it is recorded below Rs.20000/- in 10 beels, from 20000/- to below Rs.40000/- in 4 beels, from 40000/- to below Rs.80000/- in 3 beels, and finally, in one case (Siyalekhaity beel) it is found more than Rs.93000/-. The annual average NPV is found to be Rs.13387/-, which indicates the viability of the gear.

(vi) Internal Rate of Return (IRR): Fig-4.8 shows that the IRR in case of *ghatjal* is found below the economically feasible range in 12 beels of which in 5 beels, such as Brahmamaijan (-26%); Rani-megna (-22%); Sagar (-21%); Angang (-122%) and Pungani (-13%), are found as negative. Of the viable cases the IRR is recorded below 100% in most of the cases (15 beels). In 3 beels it is found from 150 to below 200% but in one case (Moridisoi beel) it is recorded up to 256%. The annual average IRR is







Contd.....

	BEELS Sagamara		
	gamara		
		22	Goroiman-Bihdia-Joo.
	EUCOR	8	Mondisol
	Botuakamakhya	24	Botalithosa
	Deepar	R	Binde
	Man	82	Teladanca
8	Borman	27	Mondikhow
7 100	Udort	28	Batha
	Nandin-kamari	82	Mailatedotince
8 8	Settyan	8	Reumani
10 50	Styraie	31	Gethia
11 0	Dighel-patel		
12 Br	Brahmamaijan		
13 D.	Digerbakri		
14 Re	Renimegra		
15 Se	Seger		
16 G	Gopharchang		
17 An	Argano	_	
18 %	Sone		
19 Sa	Satal		
20	Pungeni		
21 0	Genek-Oubsi-Duba		

			%INKR	0 33.16	1	_		+				Γ			IRR (%) NKR		9 8.65	Γ			1	$ ^{\circ}$	93 5.93	1					L
			IRR (%)	<u> </u>								219,		-	1	1	9 129												1 116
	 		BCR	7 25.89	-	100					1	F			BCR		5 6.29		Ľ	_	9 4.24	5 0.83		Γ	5 5.17	2 2.13	<u> </u>	7 2.21	5 5.11
			NPVF(Rs)	1722807		2244957				1×1	103254	711699.88			NPV (Rs)		321678.05	412080	543693.2	422099.75	108086.9	-7911.5	167495.95	497921.8	179845	83122	111087.8	54527	551994.5
			CPGH (Kg)	0.166	0.162	0.247	0.125	0.074	0.118	0.104	0.087	0.135375			CPGH (Ka) NPV (Rs)		0.117	0.133	0.236	0.162	0.096	0.086	0.121	0.208	0.111	0.111	0.096	0.117	0.223
			Days		180	200	6	120	6	120	120	141.3				1	135	160	120	8	120	8	95	8	95	6	120	6	06
			T C/Year	16800	11250	19000	7200	3420	3420	4800	2700	8573.75			T C/Year Davs		6075	6160	5460	5625	3330	2250	3325	5400	3040	2880	3900	2025	6750
				0.19	0.26	0.15	0.39			0.74	1.53	0.838			1		0.68	0.53	0.36	0.4	1.05	6.24	0.99	0.42	0.94	1.88	1.25	2.17	0.69
			NOI (Rs) PBP	289500	190550	374500	104800	23600	45500	58200	25500	139019			CTORROR NOI (RS) PBP		61775	74100	94800	77025	22850	6250	34025	88600	36020	25300	26300	16100	110850
				5.21	3.73	6.31	2.38	0.28	0.7	1.18	0.53	2.54		T	ROR		1.33	1.77	2.64	3.36	0.98	0.03	1.17	2.26	0.91	0.36	0.63	0.31	1.26
			CTORROR	7.78	5.74	8.19	4.39	1.58	1.63	2.79	1.73	4.23			CTOR		3.61	3.95	4.01	4.54	3.47	1.44	2.44	3.65	2.5	1.52	2.95	1.39	2.18
			PAT (Rs)	281500	182994.5	366166.7	97772.23	14933.34	36958.34	50771.5	20500	131449.6			PAT (Rs)		55775	69100	89866.68	70691.68	19600	1250	29091.68	83711.12	31086.68	17225	21050	10850	97975
			T R (Rs)	420000	281250	475000	180000	85500	85500	120000	67500	214344			T R (Rs)		151875	154000	136500	140625	83250	56250	83125	135000	85120	72000	97500	48600	168750
				138500	98255.55	108833.32	82227.77	70566.66	48541.66	69228.5	47000	82894.183	erial	•	T		96100	84900	46633.32	69933.32	63650	55000	54033.32	51288.88	54033.32	54775	76450	37750	70775
			TOC (Rs)	130500	00206	100500	7.5200	61900	40000	61800	42000	75325	ors of Berial		TOC (Rs)		90100	79900	41700	63600	60400	50000	49100	46400	49100	46700	71200	32500	57900
			C I (RS) Depr. (RS) TOC (RS) T C (RS)	8000	7555.55	8333.33	7027.77	8666.66	8541.66	7428.5	5000	7569.184	Economic Indicators		C I (Rs) Depr. (Rs) TOC (Rs) T C (Rs)		6000	5000	4933.32	6333.32	3250	5000	4933.32	4888.88	4933.32	8075	5250	5250	12875
	ļ		C I (RS) E	54000	49000	58000	41000	54000	52500	43000	1	48813	onomic		C I (Rs) [42000	39000	34000	31000	24000	39000	34000	37000	34000	47000	33000	35000	77000
and a second sec		-	beel	Kalidanga	Hakama	Nandini	Siligurijan	Jaluguti	Kasodhora	Kujibalipatti	Deora	Average	Table-4.3 Ec		Beel		Kalidanga	Hakama	Nandini	Harinchora	Barundanga	Bhoispuri	Jogra	Chandakhal	Deepar	Thekera	Satiyan	Dighali-patali	Salchapra

•

·

.

Table 4.2 Economic Indicators of Dolijal

.

4

٠

0.177 3.5 -0.11	0.126 2.5 -0.17		1.04 13 1.04	8	151	105	129	34	46	97		L	3.873 76.63 5	76.63	76.63	3 76.63 76.63 IRR (%) NKR	3 76.63 16.63 IRR (%) NKR	3 76.63 76.63 IRR (%) NI	3 76.63 16.63 1RR (%) NKR 9 113 7.2 5 137 8.7	3 76.63 IRR (%) NI 9 113 5 137 3 27	3 76.63 IRR (%) Ni 9 113 3 27 4 18	3 76.63 IRR (%) NI 5 137 5 137 5 27 5 42	3 76.63 9 113 5 137 5 137 6 113 7 27 8 99	3 76.63 9 113 5 137 5 137 6 113 70.63 103	3 76.63 9 113 5 137 3 27 4 18 5 42 6 99 7 103 5 47	3 76.63 9 113 18R (%) Ni 113 5 137 5 137 5 137 5 137 5 137 6 42 5 47 5 64	3 76.63 9 113 5 137 5 137 5 137 5 137 6 42 76.63 113 76.63 113 76.64 103 76.65 64	3 76.63 9 113 137 137 5 137 5 137 5 137 6 42 76.63 27 3 277 3 277 5 42 6 42 76.63 111 103 255 9 255	3 76.63 9 113 18 137 13 27 13 27 13 27 11 103 11 103 11 25 11 26 11 27 28 99 11 27 28 25 11 26 11 28	3 76.63 76.63 178 99 113 137 137 137 137 137 137 137 137 137 137 137 137 137 137 111 103 111 103 111 256 110 255 111 28	3 76.63 9 113 9 113 137 137 5 137 5 137 6 42 76.63 137 111 103 111 103 111 103 111 25 111 26 111 28 111 28 111 28 111 28
-80498 0.	-86795.2 0.	-73891.25 0	2356.25 1	L								137774.91 3.	-						1982	616	33116	0339162		2 4 3 2 3 3 1 9 1 8 2	2223331962	322:23333998	<u>33222336364987</u>	<u>339332257333349857</u>	033033222735336192	800381222336198	3869383828798798798797
0.074	0.074	0.078	0.101	0.078	0.156	0.156	0.138	0.127	0.104	0,13		0.12535				CPGH (Kg) N	CPGH (Kg) NPV (Rs)	0.148	CPGH (Kg) N 0.148	CPGH (Kg) N 0.148 0.103	CPGH (Kg) N 0.148 0.148 0.103 0.118	CPGH (Kg) N 0.148 0.148 0.103 0.118 0.092	CPGH (Kg) N 0.148 0.103 0.103 0.103 0.129	CPGH (Kg) N 0.148 0.148 0.148 0.148 0.148 0.148 0.118 0.129 0.129	CPGH (Kg) N 0.148 0.148 0.144 0.148 0.148 0.148 0.129 0.129 0.111	CPGH (Kg) N 0.148 0.148 0.148 0.148 0.148 0.103 0.118 0.129 0.129 0.111 0.113	CPGH (Kg) N 0.148 0.148 0.148 0.148 0.148 0.129 0.129 0.129 0.129 0.129	CPGH (Kg) N 0.148 0.148 0.148 0.148 0.148 0.148 0.129 0.129 0.129 0.129 0.129	CPGH (Kg) N 0.148 0.148 0.148 0.148 0.149 0.129 0.129 0.129 0.129 0.129 0.129 0.129	CPGH (Kg) N 0.148 0.118 0.118 0.129 0.129 0.129 0.129 0.129 0.129 0.129 0.129	CPGH (Kg) N 0.148 0.118 0.118 0.118 0.118 0.111 0.111 0.129 0.129 0.129 0.129 0.111 0.1138 0.138
120	110	95	90	120	80	80			110	100		101.3	-																		
2580	2365	2137.5	1755	2700	3600	2400	3200	2205	2750	2500		3491.38				T C/Yea	T C/Year Days	T C/Year 480	T C/Yeat 480 684	T C/Yeal 480 684 252	T C/Year 480 684 552 258	T C/Yeai 480 684 252 252 253 350	T C/Year 480 684 684 252 252 253 288 288 288 288 288	T C/Yea 1 C/Yea 684 684 532 350 350 490 532	T C/Yea t 1 C/Yea t 480 684 684 252 252 252 253 350 490 490 350 350	T C/Yea 1 C/Yea 252 252 252 252 252 252 252 252 252 252	T C/Yeai 252 252 252 252 252 252 253 350 490 532 532 504 505	T C/Year 1 C/Year 350 350 350 350 532 532 535 350 350	T C/Year 7 C/Year 350 350 504 505 505 505 505 505 505 505	T C/Year 1 7 7 7 <	T C/Year 7 C/Year 684 684 684 684 684 685 565 565 565 565 565 565 565 565 565
25.89	36.54	19.57	4.6	11.25	0.62	0.83	0.67	1.47	1.08	0.91		5.919						84	288	28 69 84	24 23 24	38 22 38 68 8	38 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	94 98 328 228 98 88 94 98 38 72 8 98 97 97 97 97 97 97 97 97 97 97 97 97 97	0999833228694	53 994 998 994 998 998 998 998 998 998 998	888 88 88 88 88 88 88 88 88 88 88 88 88	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	17 17 17 17 17 17 17 17 17 17 17 17 17 1	89 89 89 89 89 89 89 88 88 88 88 88 88 8	59 59 59 59 59 59 59 50 50 50 50 50 50 50 50 50 50 50 50 50
2800	2025	3625	11075	6000	49500	32700	40100	23125	23100	28500		38501				NOI (Rs) PBP	dol (Rs)	401 (Rs) 5190	JOI (Rs) 5190 7038	VOI (Rs) 5190 7098 1294	JOI (Rs) 5190 7098 1294 2011	<mark>5190 (Rs)</mark> 5190 7098 1294 2011	<mark>401 (Rs)</mark> 5190 7098 1294 2011 1600 1600	AOI (Rs) 5190 7098 1294 1294 1600 4530 5404	AOI (Rs) 5190 7098 7098 1294 1294 1600 4530 5404 5404 5404	AOI (Rs) 5190 5190 7098 1294 2011 1600 4530 5404 2520 3168	401 (Rs) 5190 5190 7098 1294 2011 1600 4530 5404 2520 3168 5570	Figure Figure<	Figure Figure<	HOI (Rs) 5190 5190 5191 5404 2011 2600 5404 2520 3168 3168 5570 5570 5570 5775	AOI (Rs) 401 (Rs) 5190 5191 5190 5190 5100 7098 1294 2011 1600 5404 5570 5570 5570 5775 5775
-0.1	-0.1	- 9	0.07	0.07	1.5	1.06	1.31	0.54	0.78	0.93		0.77	-																┉┟┉┉┉┟┉┉┉┟┉┉┧┉┉┧┉┉┧┉┉┾┉┉┟┉┉┟┉┉┟┉┉┟┉┉┟┉┉┟┉┉┟┉┉┼┉╖┼┉┉┧		
68.0	0.8	0.75	0.86	5 1	3 2.95	1 2.22	L	1.62	3 2.75	1 2.4		3 2.07		-		CTORROR															
-9075	-9975	'	ဗ္ဂု	-4875	45847.23	28823.34	35421.5	18191.68	19627.78	24309.54		31388.03				PAT (Rs)	PAT (Rs)	PAT (Rs) 4709.46	PAT (Rs) 4709.46 6507.53	PAT (Rs) 4709.46 6507.53 788.06	PAT (Rs) 4709.46 6507.53 788.06 1552.67	PAT (Rs) 4709.46 6507.53 788.06 1552.67	PAT (Rs) 4709.46 6507.53 788.06 1552.67 1233.34 4027.23	PAT (Rs) 4709.46 6507.53 788.06 1552.67 1233.34 4027.23 4850.67	PAT (Rs) 4709.46 6507.53 788.06 1552.67 1552.67 1552.67 1552.67 1552.67 1552.67 1552.67 1829.53	PAT (Rs) 4709.46 6507.53 788.06 1552.67 1552.67 1552.67 1552.67 1552.67 1552.67 1552.67 1829.53 1829.53	PAT (Rs) 4709.46 6507.53 788.06 788.06 1552.67 1552.67 1829.53 2664.67 5056.67	PAT (Rs) 4709.46 6507.53 788.06 1552.67 1552.67 1523.34 4027.23 4850.67 1829.53 2664.67 5056.67 5056.67	PAT (Rs) PAT (Rs) 780.46 6507.63 788.06 788.06 1552.67 1233.34 4027.23 4850.67 1829.53 2664.67 5056.67 1112.23	PAT (Rs) PAT (Rs) 4709.46 6507.53 788.06 788.06 1233.34 4027.23 4027.23 1233.34 4027.23 12233.34 4027.23 1233.34 1233.34 1233.34 1223.37 1223.34 1223.34 1223.34 1223.34 1223.34 1223.34 1223.34 1223.34 1223.34 1233.34 1233.34 1233.34 1233.34 1312.23 1112.23 5221.67	
64500	59125	53425	43875	67500	00006	60000	80000	55125	68750	62500		87638.5	-			T R (Rs)	(Rs)	(Rs) 0560	(Rs) 0560 5048	(Rs) 0560 5544	(Rs) 0560 5048 5544 6336	(Rs) 5048 5544 6336 7700	(Rs) 5048 5544 5544 5544 7700 0780	(Rs) 5048 5544 5544 5544 7700 0780	(Rs) 5048 5544 6336 7700 0780 0780 0780	(Rs) (Fs) (560 0560 0560 0560 0560 0560 0560 0560	(Rs) 0560 0560 0564 5544 6336 7700 0780 0780 0780 1704 1704 1704 3090 3090	(Rs) 5048 5544 5544 6336 7700 0780 1704 1704 1704 7920 33090 8750	(Rs) 5048 5544 6536 7700 7700 77920 7920 7920 8750 8750 2870	(Rs) 5048 5544 5544 6536 7700 7700 7700 77920 77920 77920 3090 8750 2870 2870	(Rs) 5048 5544 5544 5544 5544 1700 17700 7720 1704 1704 1704 1702 8750 2870 2870 2870 0560
73575	69100	61549.99	40549.99	72375	44152.77	31176.66	44578.5	36933.32	49122.22	38190.46		56250.472		nansijal.	of Phansijal.	ansijal. C (Rs)	ansijal. C (Rs)	ansijal. C (Rs) 5850.54	ansijal. C (Rs) 5850.54 8540.47	ansijal. C (Rs) 5850.54 8540.47 4755.94	ansijal. C (Rs) 5850.54 8540.47 4755.94	ansijal. C (Rs) 5850.54 8540.47 4755.94 4783.33 6466.66	ansijal. C (Rs) 5850.54 8540.47 4755.94 4783.33 6466.66 6752.77	ansijal. C (Rs) 5850.54 8540.47 4783.33 6466.66 6752.77 6853.33	ansijal. C (Rs) 5850.54 8540.47 4783.33 6466.66 6752.77 6853.33 6853.33	ansijal. C (Rs) 5850.54 8540.47 4755.94 4755.94 4783.33 6466.66 6752.77 6853.33 6090.47 8423.33	ansijal. C (Rs) 5850.54 8540.47 4755.94 4755.94 4783.33 6466.66 6752.77 6853.33 8423.33 8423.33	ansijal. C (Rs) 5850.54 8540.47 4755.94 4755.94 4783.33 6466.66 6752.77 6863.33 8033.33 8033.33	ansijal. C (Rs) 5850.54 5850.54 8755.94 4755.94 4755.94 4753.33 6466.66 6752.77 6853.33 6090.47 8423.33 8033.33 8033.33	ansijal. C (Rs) 5850.54 5850.54 4755.94 4755.94 4783.33 6466.66 6752.77 6863.33 6873.33 6873.33 6873.33 6873.33	C (Rs) 5850.54 5850.54 5850.54 5850.54 4755.94 4755.93 6466.66 6853.33 6090.47 8033.33 6873.33 6873.33 6873.33 6873.33 6873.33 6873.33 6873.33 6873.33 6873.33 6873.33 6873.33
61700	57100	49800	32800	61500	40500	27300	39900	32000	45650	34000		49137.5	-	rs of Pt	rs of Pt	rs of Pr TOC (Rs)	TOC (Rs)	TOC (Rs) 7	rs of Ph TOC (Rs) 1 5370 7950	TOC (Rs) 7950 7950	rs of Ph 5370 7950 4250 4325	TOC (Rs) 5370 7950 4250 6100	TOC (Rs) 7950 7950 7950 4250 6100 6250	TOC (Rs) 7950 7950 4250 4250 6300 6300	rts of Ph 7950 5370 5370 5370 7950 4325 6100 6100 6250 6250 6300 5400	rs of Ph 7950 7950 7950 6100 6250 6300 6320 6300 5400 5400	rs of Ph 7950 7950 7950 6100 6250 6300 5400 5400 7920 7920	rs of Ph 7950 7950 7950 6100 6100 6100 6250 6300 6350 6350 6350 6350 6350	rs of Ph 5370 5370 5370 5370 7950 6100 6100 6100 6100 6100 6100 6350 7920 7920 7920 7920 7920 7920 7920	rs of Ph 5370 5370 5370 5370 7950 6100 6250 6100 6250 6300 7920 7920 7920 7920 7920 7920 7920 6300 6350 6300	rs of Ph TOC (Rs) 7 7950 7950 7950 4250 6100 6100 6250 6300 6350 6300 6350 6300 6300 6300 6300 6300 71520 77520 77520 77520 6100 6250 77520 77520 6100 6250 77520 77520 6100 6250 77520 77520 6100 6250 77520 77520 77520 77520 77520 77520 77520 77520 77520 77520 77520 77520 77520 6100 62500 77520 62500 77520 77520 77520 77520 77520 77520 77520 77520 77520 77520 77520 77520 77520 61000 62500 62500 77520 62500 62500 77520 77520 62500 622500 62250 77520 77520 77520 62200 62250 77520 77520 77520 77520 77520 62200 62200 62200 77520 62200 62200 775200 775200 775200 775200 775200
11875	12000	11749.99	7749.99	10875	3652.77	3876.66	4678.5	4933.32	3472.22	4190.46		7112.972	-	Indicato	Indicato	nomic Indicators of Pha CI (Rs) Depr. (Rs) TOC (Rs) T	Indicato	Indicato Depr. (Rs) 1 480.54	Indicato	Depr. (Rs) 1 590.47 505.94	Indicato Jepr. (Rs) 7 590.47 505.94 458.33	Indicato Depr. (Rs) ¹ 260.47 505.94 458.33 366.66	Indicato Depr. (Rs) 1 590.47 505.94 458.33 366.66 502.77	Depr. (Rs) Jepr. (Rs) 360.54 480.54 590.47 506.47 505.94 553.33 366.66 553.33 553.33 553.33	Sepr. (Rs) Jepr. (Rs) Jepr. (Rs) 590.47 590.47 505.94 458.33 366.66 502.77 553.33 690.47	Indicato Jepr. (Rs) ¹ 790.54 590.47 505.94 505.94 553.33 553.33 553.33 503.33	Indicato Depr. (Rs) ¹ 260.47 590.47 505.94 458.33 366.66 505.33 563.33 502.77 553.33 503.33 513.33	Indicato Depr. (Rs) ¹ 260.47 590.47 505.94 458.33 366.66 502.77 553.33 690.47 503.33 513.33 513.33	Indicato Depr. (Rs) ¹ 2690.47 590.47 505.94 458.33 366.66 502.77 503.33 690.47 503.33 513.33 513.33	Bit Carlow Depr. (Rs) Depr. (Rs) Depr. (Rs) 1 260.47 590.47 505.94 505.94 502.77 502.333 562.333 503.33 503.33 513.33 523.33 523.33 553.33	Figure Figure<
72000	74000	71000	51000	67500	30500	27000	27000	34000	25000	26000	1	45750	•	nomic	nomic	nomic l c I (Rs) [c1 (Rs) [nomic I C I (Rs) D 4350	C I (Rs) C 4350	nomic 1 C1 (Rs) C 4350 4900 4250	nomic 1 C1(Rs)C 4350 4900 4250	nomic l C l (Rs) C 4350 4900 4500 4500 3800	nomic 1 C1 (Rs) C 4350 4900 4900 4500 3800 3800	nomic 1 C1 (Rs) C 4350 4900 4250 4250 4450 5100 5100	nomic l C I (Rs) C 4350 4900 4500 3800 5250 5250	nomic l C I (Rs) C 4350 4900 4500 3800 4450 5100 5250 5250 5250	nomic l C l (Rs) C 4350 4900 4500 3800 44500 5100 5100 5100 4850 4850	nomic l CI (Rs) C 4350 4350 4350 4350 4350 3800 3800 3800 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450 4450	nomic l Cl (Rs) C 4350 4900 4900 3800 3800 3800 4450 4450 4450 4450 6000 6000	nomic l CI (Rs) C 4350 4350 4900 4900 3800 3800 3800 3800 4450 4850 6100 6000 6000 6000	nomic l C l (Rs) C 4350 4900 4900 4450 5100 5100 5100 5100 5100 5100 51
Auti-Bauti	Tapang	Digar-Bakri	Rani-Megna	Gopharchang	Pungani	Ganak- D. Duba	Botalıkhosa	Bihdia	Teliadanga	Moridikhow		Average	-	Table-4.4 Economic Indicators	Table-4.4 Eco	Table-4.4 Eco Beel	Table-4.4 Eco ^{Beel}	Table-4.4 Eco Beel Kalidanga	Table-4.4 Eco Beel Kalidanga Hakama	Table-4.4 Eco Beel Kalidanga Hakama Nandini	Table-4.4 Eco Beel Kalidanga Hakama Nandini Harinchora	Table-4.4 Eco Beel Kalidanga Hakama Nandini Harinchora Barundanga	Table-4.4 Eco Beel Kalidanga Hakama Nandini Harinchora Barundanga Bhoispuri	Table-4,4 Eco Beel Kalidanga Hakama Nandini Harinchora Barundanga Bhoispuri Jogra	Table-4.4 Eco Beel Kalidanga Hakama Nandini Harinchora Barundanga Bhoispuri Jogra Chandakhal	Table-4.4 Eco Beel Kalidanga Hakama Nandini Harinchora Barundanga Barundanga Boispuri Jogra Chandakhal Sagmara	Table-4,4 Eco Beel Beel Kalidanga Hakama Nandini Harinchora Barundanga Bhoispuri Jogra Chandakhal Sagmara Borbilla	Table-4.4 Eco Beel Kalidanga Hakama Nandini Harinchora Barundanga Barundanga Bhoispuri Jogra Chandakhal Sagmara Botua-kamakhya	Table-4.4 Eco Beel Kalidanga Hakama Nandini Harinchora Barundanga Bhoispuri Jogra Chandakhal Sagmara Borbilla Botua-kamakhya Siligurijan	Table-4.4 Eco Beel Kalidanga Harinchora Barundanga Bhoispuri Jogra Chandakhal Sagmara Borbilia Botua-kamakhya Siligurijan	Table-4,4 Eco Beel Kalidanga Hakama Nandini Harinchora Barundanga Bhoispuri Jogra Chandakhal Sagmara Botua-kamakhya Siligurijan Deepar

1 72	2 41	2.35	4 16	4 17	271	4 20	4 03	7 45	4.61	271	3 60	2 24	2 19	14.23	3.29	8:07	1.82	9.84	7.03	1.7	1.11	9.66	3.28	6.41	4.69	2.52	11.58	3.58	6.32
26	39	8	67	67	44	. Gg	65	119	74	4	: Ug	36	35	226	25	128	28	157	112	26	14	149	45	100	74	41	179	58	66
1.66	2.27	2.17	3.63	3.66	2.45	4.06	3.75	7.02	4.23	2.58	3.48	2.12	2.07	13.03	2.94	7.62	1.74	9.18	6.48	1.65	1.09	8.1	2.87	5.43	3.82	2.34	9.88	3.28	5.31
3460.72	6193.21	7176.98	15468.08	15520.04	9347.07	13688.36	13342.66	29994.21	18747.81	8227.02	12931.42	5529.83	6103.74	57552.69	12613.9	36778.79	4269.4	36684.21	33768.24	2874.91	491.19	49363.15	12984.52	30811.72	18479.45	7133.88	51855.34	12147.88	23925
0.092	0.101	0.101	0.111	0.111	0.101	0.129	0.111	0.138	0.052	0.101	0.111	0.092	0.069	0.083	0.05	0.175	0.1	0.074	0.074	0.074	0.088	0.129	0.083	0.129	0.101	0.083	0.222	0.078	0.12
140	140	140	160	160	160	95	140	150	210	140	140	160	09	180	180	120	120	150	150	210	120	130	140	100	95	140	110	160	<u>6</u>
350	385	385	480	480	440	332.5	420	562.5	598.5	385	420	400	225	810	495	570	324	600	600	840	288	910	630	200	522.5	630	660	680	650
3.43	2.47	2.47	1.43	1.42	2.13	1.41	1.49	0.82	1.31	2.21	1.64	2.63	2.68	0.43	1.78	0.76	3	0.62	0.87	3.52	5.08	0.62	1.77	0.93	1.24	2.34	0.53	1.67	5.92
1400	1785	2150	3450	3440	2560	2935	2940	5650	3967	2170	2930	1690	1900	10070	3090	6840	1728	6650	6450	1180	876	9220	3220	6100	4045	2010	9320	2820	760
0.19	0.29	0.3	0.59	0.59	0.37	0.6	0.56	1.09	0.63	0.35	0.5	0.27	0.24	2.18	0.39	1.19	0.19	1.48	1.01	0.16	60.0	1.46	0.46	0.96	0.67	0.31	1.79	0.49	0.93
1.6	1.84	1.59	2.13	2.16	1.78	1.76	2.1	2.66	2.53	1.76	1.92	1.98	0.97	2.18	1.98	2.41	1.37	3.18	2.35	4.45	1.42	3.51	2.65	2.7	2.29	0.34	2.96	3.47	2.1
906.67	1313.34	1615	2926.67	2926.67	1995	2480.84	2468.34	5100	3290.82	1676.67	2436.67	1208.34	200	9495.01	2131.68	6231.67	994.67	6141.68	5708.34	671.68	394.34	8322.15	2605	5485	3378.34	1478.34	8761.67	2288.34	4182.64
7700	8085	8470	10560	10560	9680	7315	9240	12375	13167	8470	9240	8800	4950	17820	10890	12540	7128	13200	13200	18480	6336	20020	15120	15400	11495	13860	14520	16320	9460
6793.33	6771.66	6855	763.33	7633.33	7685	4834.16	6771.66	7274.99	9876.18	6793.33	9803.33	7591.66	3750	8324.99	8758.32	6308.33	6133.33	7058.32	7491.66	17808.32	5941.66	11697.85	12515	9915	8116.66	12381.66	5758.33	14031.66	5277.36
6300	6300	6320	7110	-7120	7120	.4380	6300	6725	9200	6300	6310	7110	3050	7750	7800	5700	5400	6550	6750	17300	5460	10980	11900	9300	7450	11850	5200	13500	8700
493.33	471.66	535	523.33	513.33	565	454.16	471.66	549.99	676.18	493.33	493.33	481.66	002	574.99	958.32	608.33	733.33	508.32	741.66	508.32	481.66	717.85	615	615	666.66	531.66	558.33	531.66	577.36
4800	4400	5300	4950	4900	5450	4150	4400	4650	5200	4800	4800	4450	5100	4350	5500	5200	5200	4150	5600	4100	4450	5700	5700	5700	5000	4700	4900	4700	4500
Jaluguti	Kasodhora	Kujibalipatti	Deora	Thekara	Udori	Nandini-karmari	Lakhanabandha	Satiyan	Siyalekhaity	Dighali-patali	Brahmamaijan	Salchapra	Sibnaraypur	Baskandi	Auti-Bauti	Tapang	Digar-bakri	Rani-megna	Sagar	Gopharchang	Angang	Pungani	G.D.duba	G.B.Jopora	Merkolaberia	Tinsuliborbil	Moridisoi	Botalikhosa	Bihdia ·

4.42	4 2	8 87	9 10	2 85	8 94	4.719		T	T	T	T	XR R		7.26	7.38	6.85	7.36	7.39	6.89	5.21	7.34	3.22	6.58	4.92	3.76	2.98	42.37	3.83	
112	89	140	00	46	111	 74.765	_		╋	+-		IRR (%) NKR		113	117	107	115	110	105	82	114	52	104	12	59	48	1	-	
4.13	3.96	8.2	5.68	2.65	6.44	4.291		+-	+		-	BCR II		6.24	6.76	5.28	6.38	5.56	5.45	4.51	6.28	2.72	6.08	4.2	3.14	2.65	17.04	3.65	
18821.49	17122.39	65630.25	23109.43	9715.55	29122.38	18720.69						Τ	Π	26932.68	30644.2	25738.34	60849.41	30050	25933.6	20865.27	31388.27	10887.1	26802.88	18217.05	13548.8	9847.07	10342.5	13581.98	
0.083	0.12	0.137	0.106	0.111	0.123	0.1078627						CPGH (Kg) NPV (Rs)		0.148	0.129	0.129	0.129	0.129	0.138	0.128	0.138	0.064	0.051	0.083	0.111	0.111	0.074	0.083	
80	140	185	10	120	180	138.9		┢	$\left \right $			T		120	180	160	180	180	140	140	160	90	270	240	160	120	180	190	
360	455	684	288	. 360	595	497.549			<u> </u>			T C/Year Days		480	630	560	630	630	525	490	600	315	756	1080	480	360	360	855	,
1.35	1.45	0.69	0.98	2.08	0.88	 1.808								0.83	0.81	0.86	0.82	0.79	0.86	1.14	0.82	1.8	0.93	1.2	1.53	1.92	0.14	1.59	
4065	3700	7098	4530	2520	5570	3819.29						NOI (Rs) PBP		5180	5910	5120	5910	5920	5130	4330	6030	2680	5182	3860	3210	2550	1775	3020	
0.62	0.59	1.33	0.9	0.35	1.03	 0.68								1.09	+	1.03	1.1	1.14	1.05	0.76	1.1	0.44	0.98	0.72	0.54	0.39	6.6	0.54	
1.44	1.87	3.07	2.42	1.57	2.67	2.16						CTORROR		2.46	2.88	2.8	1	2.95	2.63	2.17	2.67	1.41	3.46	5.1	2.16	1.8	36	3.92	
3404.29	3155	6507.53	4027.23	1829.53	5056.67	3305.906						PAT (Rs)		4711.23	5348.1	4571.2	5364.17	5361.68	4638.34	3759.17	5485.56	2146.67	4740.34	3364.17	2651.67	1979.17	1650	2570	
7920	10010	15048	10780	7920	13090	 11013						T R (Rs)		10560	13860	12320	13860	13860	11550	10780	13200	6930	16632	23760	10560	0006	0006	18810	
4515.71	6855	8540.47	6752.77	6090.47	8033.33	 7611.6227				of Langijal.		T C (Rs) .		5848.//	8511.9	7748.8	8495.83	8498.32	6911.66	7020.83	7714.44	4783.33	11891.66	20395.83	7908.33	7020.83	7350	16240	
3855	6310	7950	6250	5400	7520	7197.25						TOC (Rs)		238U	1980	7200	7950	7940	6420	6450	7170		•	19900	7350	6450	7225	15790	
660.71	545	590.47	502.77	690.47	513.33	568.6816				Economic Indicators		C I (Rs) Depr. (Rs) TOC (Rs)		408.77	561.9	548.8	545.83	558.32	491.66	570.83	544.44	533.33	441.66	495.83	558.83	570.83	125	450	،
5500	5350	4900	4450	5250	4900	4910.8				onomic		C I (Rs) I	0007	4300	4800	4400	4850	4700	4400	4950	4950	4900	4800	4650	4900	4950	250	4800	
Teliadanga	Moridikhow	Batha	Mailata-Dipling.	Raumari	Gathia	Average				Table-4.5 Eco		Beel		railganga	Hakama	Nandini	Harinchora	Barundanga	Bhoispuri	Jogra	Chandakhal	Sagamara	Borbilla	Botua-kamakhya	Siligurijan	Deepar	Solmari	Mori .	

,

	5300	552.78	15920	16472.78	18700	2227.22	3.53	0.42	2780	1.9	850	190	0.092	12096.38	3.36	57	3.57
	4700	508.78	10170	10678.33	18480	7801.67	3.93	1.66	8310	0.57	840	120	0.129	45633.6	8.86	164	10 71
	4250	458.32	10135	10593.32	18480	7886.68	4.35	1.87	8345	0.51	840	120	0.129	47026	9.65	182	12 06
Kujibalipatti	5250	541.66	11725	12266.66	20020	7933.34	3.81	1.51	8475	0.62	910	140	0.12	46430.7	8.7	1501	0.84
	4900	558.33	7230	7788.33	8800	1011.67	1.79	0.21	1570	3.12	400	160	0.092	3882.24	1.66	28	1 79
	4600	504.75	7820	8324.75	8910	585.25	1.94	0.13	1090	4.22	405	6	0.083	1199.7	1.21	121	1.26
	5300	575	.5360	5935	15840	9905	2.99	1.87	10480	0.51	720	120	0.111	58308	9.88	183	
Nandini-karmari	4450	563.08	6380	6943.08	00/1	759.92	1.73	0.17	1320	3.37	350	140	0.092	3389.37	1.7	27	1.75
akhanabandha	3850	391.66	4150	4541.66	7425	2883.34	1.93	0.74	3275	1.78	337.5	6	0.069	15869.6	4.6	81	5.12
+	4850	576.18	7140	7716.18	9680	1963.82	2	0.4	2540	1.91	440	160	0.101	9989.11	2.74	49	3.06
Siyalekhaity	4900	558.33	7080	7638.33	8800	1161.67	1.79	0.24	1720	2.85	400	160	0.092	4811.34	1.82	31	1.98
Dighali-patali	4350	433.33	11450	11883.33	17820	5936.67	4.09	1.36	6370	0.68	810	270	0.111	34716.51	8.36	143	8.98
Brahmamaijan	4900	590.47	6410	7000.47	10780	3779.53	2.2	0.77	4370	1.12	490	140	0.129	21214.84	4.64	84	4.64
	400	548.8	6420	6968.8	8470	1501.2	1.92	0.34	2050	2.15	385	140	0.101	7354.04	2.38	4	2.67
Sibnarayanpur	4900	558.33	7190	7748.33	9680	1931.67	1.98	0.39	2490	1.97	440	160	0.101	9577.64	2.64	48	2.95
	4400	516.66	1990	8506.66	11880	3373.24	2.7	0.77	3890	1.13	540	180	0.111	18743.64	4.51	83	5.26
	4850	504.16	7980	8484.16	0066	1415.84	2.27	0.33	1920	2.27	450	180	0.092	6651.31	2.27	4	2.53
	5600	689.28	8125	8814.28	11088	2273.72	1.98	0.41	2963	1.89	504	180	0.103	11597.63	2.72	50	3.07
	5100	608.33	7250	7858.33	9680	1821.67	1.89	0.36	2430	2.1	440	160	0.101	8798.38	2.41	45	2.72
Rani-megna	4450	563.08	5620	6183.08	6600	416.92	1.48	60.0	980	4.54	300	120	0.092	628.77	1.11	15	1.14
	4000	458.32	22500	22958.32	26730	3771.68	6.68	0.94	4230	0.94	1215	270	0.083	21394.2	5.25	66	6.35
	4100	463.08	5640	6103.08	6600	496.92	1.61	0.12	960	4.27	300	120	0.092	1218.78	1.25	18	1.29
	4450	563.08	6390	6953.08	0011	746.92	1.73	0.17	1310	3.39	350	140	0.092	2671.47	1.49	24	1.6
	5350	563.88	7375	7938.88	11220	3281.12	2.09	0.61	3845	1.39	510	85	0.111	17108.4	3.56	99	4.19
	5000	517.85	6200	6717.85	9240	2522.15	1.85	0.5	3040	1.64	420	140	0.111	13297.9	3.41	59	3.66
G.B. Jopora	5300	552.78	5550	6102.78	8470	2367.22	1.59	0.45	2920	1.82	385	110	0.064	11943.28	2.95	53	3.25
Merkolaberia	4300	469.44	8700	9169.44	0066	730.56	2.3	0.17	1200	3.58	450	100	0.083	1864.8	1.33	23	1.43
Tinsuli-borbil	4300	469.44	11330	11799.44	19305	7505.56	4.49	1.75	7975	0.54	877.5	135	0.12	43802.05	8.87	168	11.18
	4700	533.33	5200	5733.33	8470	2736.67	1.8	0.58	3270	1.44	385	110	0.064	14436	3.48	65	4.07
Rotalikhosa (4250		1750														

Jaluguti	4650	477.77	8600	9077.77	14300	5222.23	3.07	1.12	57001	0.82	650	1001	0.043	29957	6.62	117	7 44
Kaso	4450	529.16	7200	7729.16	8800	1070.84	1.98 (0.24	1600	2.78	400	160	0.016	4466	1.82		
Kuji	5400	632.14	7200	7832.14	7920	87.86	1.47 (0.02	720	7.5	360	160	0.015	-1878.66	12.0	1	0.65
Deora	800	257.14	5880	6137.14	8470	2332.86	9.41	2.59	2590	0.35	385	140	0.018	14197	8.73	217	16.77
Thekera	4800	533.33	7850	8383.33	14850	6466.67	3.09	1.35	7000	0.69	675	180	0.025	37698	7.69	138	8.85
Udori	5250	541.66	10980	11521.66	35750	24228.34	6.81	4.61	24770	0.21	1625	130	0.083	146892	23.83	450	29.98
N.karmari	4250	541.66	.7370	7911.66	9350	1438.34	2.2	0.34	1980	2.15	425	85	0.033	6822	2.55	42	2.6
L.bandha	4100	424.99	8950	9374.99	11550	2175.01	2.82 (0.75	2600	1.58	525	210	0.016	11370	3.41	61	3.77
Satiyan	4750	500	6650	7150	4950	-2200	1.04	ę	-1700	, 1	225	150	0.01	-15652.95	-2.21	-3.5	-2.29
Siyale	5500	666.66	11350	12016.66	16632	4615.34	3.02	1.19	5282	1.04	756	270	0.012	25636	4.63	88	5.66
D.patali	4750	500	5550	6050	7260	1210	1.53 (0.25	1710	2.78	330	120	0.018	5055	1.91	33	2.06
B.maijan	950	271.42	6590	6861.42	8800	1938.58	9.26	2.04	2210	0.43	400	160	0.016	11742	7.06	175	13.36
Salchap	4250	541.66	00/1	8241.66	14850	6608.34	3.49	1.55	7150	0.59	675	180	0.025	39229	8.79	159	10.23
Sibnaray	4750	547.61	3000	3547.61	4620	1072.39	6.16	0.23	1620	2.93	210	60	0.023	4498	1.81	30	1.94
Baska	4450	563.08	11450	12013.08	14850	2836.92	3.34 (0.64	3400	1.31	675	270	0.016	15608	3.87	11	4.51
A.bauti	4250	505.94	6600	7105.94	9240	2134.06	2.17	0.5	2640	1.61	420	150	0.018	11312	3.25	59	3.66
Tapang	5150	591.66	5500	6091.66	11800	5708.34	2.29		6300	0.82	540	120	0.03	33171	6.69	117	7.44
D.bakri	4750	604.75	8080	8684.75	0066	1215.25	2	0.25	1820	2.72	450	180	0.016	5528	1.96	34	2.16
R.megna	4400	548.8	6550	7098.8	7425	326.2	1.68 (0.07	875	5.03	412.5	150	0.018	81	1.01	12	1.02
Sagar	5250	589.28	4250	4839.28	6930	2090.72	1.32 (0.39	2680	1.96	315	06	0.023	10559	2.75	49	3.01
Gophar	4250	505.94	8900	9405.94	11500	2094.06	2.7 (0.49	2600	1.63	525	210	0.016	11064	3.19	58	3.6
Angang	4600	605.94	10200	10805.94	11220	414.06		60.0	1020	4.51	510	120	0.028	570	1.09	15	1.12
Sone	4600	605.94	22500	23105.94	29700	6594.06	6.46	1.4	7200	0.64 `	1350	270	0.033	1091	1.17	17	1.23
Rata	5400	555	4550	5105	6600	1495	1.22 (0.28	2050	2.63	300	100	0.02	6354	2	36	2.17
G.B.Jop.	5300	552.78	7350	7902.78	6545	-1357.78	1.23	-0.3	-805		297	85	0.023	-11114.47	-1.23	-14.47	-1.09
M.beria	4200	447.22	0/1/	8217.22	0066	1682.78	2.36	0.4	2130	1.97	450	80	0.033	7879	2.48	46	2.87
T.borbil	4450	563.08	7150	7713.08	9680	1966.92	0.46	0.44	2530	1.76	440	160	0.018	10431	2.99	54	3.34
M.disoi	5200	573.33	11050	11623.33	22880	11256.67	4.4	2.16	11830	0.44	1040	260	0.026	6678	11.36	211	13.84
B.khosa	4250	479.16	3750	4229.16	7040	2810.84	1.66 (0.66	3290	1.29	320	80	0.026	15335	4.05	73	4.61
Bindia	4450	563.08	7120	7683.08	7920	236.92	1.78 (0.05	800	556	360	160	0.015	-485.54	0.91	5	0.89

0.39	8.68	1.94	2.65	190	-1.02	5.659	 			NKR		13.32	3.26	-3.6	0.92	-0.99	-7.67	-0.89	-5.67	-1.18	-0.35	1.19	1.2	-3.64	-0.85	1.4	-0.45	-0.17	3.8	-6.01
8.5	133	31	43	Ę	-14.86	84.455			T	IRR (%) NKR		209	52	-56	10	÷	-121	-12	8 9	-18	-271	16	16	-56	1-1	20	Ŷ	-13	61	<u>9</u>
0.48	7.21	1.79	2.48	60	_	4.373				BCR I		11.85	2.96	-3.33	0.93	-0.69	-7.09	-0.66	-5.27	-1.05	-0.15	1.17	1.17	-3.32	-0.59	1.34	0.27	-0.73	3.36	-5.47
-3191.27	40728	4008	7428	-413.68	-6675.94	15606.263						42507	7896	-15934.17	-265.28	-7163.88	-30370.3	-6517.53	-24335.92	-7963.37	-4842.64	710	728	-16226.15	-7023.44	1540	-5890.62	-6242.54	10221	-23498.53
0.016	0.053	0.02	0.021	0.018	0.011	0.0228462				CPGH (Kg) NPV (Rs)		0.125	0.083	0.037	0.066	0.055	0.052	0.055	0.033	0.052	0.041	0.069	0.069	0.041	0.055	0.069	0.055	0.055	0.083	0.027
75	85	110	6	65	180	148.6				1	_	160	120	120	120	85	140	140	180	120	160	120	85	160	145	140	160	09	140	140
187.5	680	345	288	180	315	505.125				T C/Year Days		720	360	162	288	170	266	280	216	228	240	300	212.5	240	290	350	320	120	420	140
11.16	0.69	1.73	2.24	5.8		12.14						0.46	1.82	i.	6.29	1	1	. í	`ı	5.5	1	4.6	4.5	•	•	3.93	1	-1	1.55	1
415	7640	2460	2011	810	-820	3646.54				NOI (Rs) PBP		7500	1925	-1980	540	-475	-4300	-420	-3305	-660	-100	780	800	-2015	-420	980	-205	-425	2350	-3210
<u> </u>	1.33	0.46	0.35	0.06	-0.3	 0.86				ROR N		2.15	4.0	-0.7	0.06	-0.2	-1.3	-0.2	-1	-0.3	-0.1	0.1	0.11	-0.7	0.22	0.14	-0.2	-0.2	0.53	-1.1
0.78	2.82	1.79	1.41	0.84	1.28	 3.15			†	CTORROR		4.17	2.06	0.94	1.69	0.94	0.72	1.62	1.18	1.25	1.87	1.64	1.3	1.37	1.53	1.81	1.66	0.73	2.3	0.88
-128.57	7065	1954	1552.67	321.12	-1395	3138.838		Fishing		PAT (Rs)		7410	1533.34	-2330	216.2	-875	-4692.85	-782.5	-3684.16	-1039.16	-500	400.84	40	-2390	-836.66	550.84	-606.66	-750	1937.5	-3547.5
4125	14960	7590	6336	3960	6930	11208		id Line		T R (Rs)		14400	007/	3240	5760	3400	2520	5600	4320	4560	6720	0009	4675	4800	5800	0002	6720	2400	8400	2940
4253.57	7895	5636	4783.33	3638.88	8325	8069.135		of Hooks and		C (Rs)	0000	0689	2000.000	5570	5543.8	4275	7212.5	6382.5	8004.16	5599.16	7220	5599.16	4275	7190	6636.66	6449.16	7326.66	3150	6462.5	6487.5
3650	7320	5130	4325	3150	7750	7548.37				TOC (Rs)	0000	0080	C/7C	5220	5220	3875	6820	6020	7625	5220	6820	5220	3875	6815	6220	6020	6925	2825	6050	6150
603.57	575	506	458.33	488.88	575	520.7696		Economic Indicators		C1 (Rs) Depr. (Rs) TOC (Rs) T	G	0.00	00.185	350	323.8	400	392.85	362.5	379.16	379.16	400	379.16	40	375	416.66	429.16	401.66	325	412.5	337.5
5300	5300	4250	4500	4700	5400	5250		conomi		CI (Rs)I	Uare	0400	nner	3450	3400	3600	3500	3450	3650	3650	3600	3650	3600	3500	3800	3850	4050	3300	3650	3350
T.danga	M.dikow	Batha	M.dipling	Raumari	Gathia	Average		Table- 4.7 E		Beel	Kalidood	Naliuarig		Nandini	Hann	B.danga	Bhois	Jogra	Chanda	Sagmara	Borbila	B.kamak	Deepar	Jaluguti	Kasod.	Kuji	Deora	Thekera	Udori	N.karmar

L.bandha	3350	327.77	5220	5547.77	3360	-2817.77	Ŧ	-0.7	-1860	;	168	120	0.038	-18940.41	4.37	-73	4.65
Satiyan	3550	354.16	6820	7174.16	5600	-1574.16	1.58	-0.4	-1220	;	280	160	0.048	-11279,11	-2.03	-34	-2.18
Siyale	3400	350	6740	2090	5040	-2050	1.48	-0.6	-1700	 	252	140	0.05	-14125.64	-2.92	49	-3.15
D.patali	3600	400	6220	6620	5600	-1020	1.56	-0.3	-620	1	280	140	0.055	-8061.44	0.91	-16	-1.24
B.maija	3850	379.16		7329.16	8064	734.84	2.09	0.19	1114	3.46	448	160	0.077	2682	1.64	26	1.69
Salchap	3350	337.5		7162.5	6400	-762.5	1.91	-0.2	-425	1	320	160	0.055	-6344.54	-0.71	-12	-0.89
Sibnaray	3250	312.5		4462.5	3240	-1222.5	0.99	-0.4	-910-	,	180	60	0.055	-9142.75	-1.6	-27	-1,83
Baskandi	3550	354.16	. 6420	6744.16	8250	1475.84	2.32	0.42	1800	1.97	412.5	150	0.076	7414	2.89	20	3.08
A.bauti	3500	36	6850	7211.11	0006	1788.89	2.57	0.51	2150	1.63	450	160	0.069	9289	3.31	59	3.65
D.bakri	3600			5320	6600	980	1.83	0.27	1380	2.61	300	120	0.041	4318	1.43	35	2.19
R.megna	360			7740	8100	360	2.25	0.1	480	7.5	385	180	0.059	-1252.54	0.7	4	0.65
Sagar	3600	400		5625	6000	375	1.67	0.1	775	4.64	300	120	0.055	574	1.13	15	1.16
Gophar	3400	338.88		9163.88	9450	286.12	2.78	0.08	625	5.44	525	210	0.069	53	1.01	12	1.02
Angang	3600	383.33		7208.33	7776	567.67	2.16	0.15	951	3.78	432	160	0.075	1663	1.39	21	1.46
Sone	3450	362.5		11612.5	12150	537.5	3.52	0.16	900	3.83	675	270	0.055	1653	1.42	22	1.48
Rata	3500		5450	5800	5040	-760	1.44	-0.2	-410	, ,	210	120	0.048	-6291.2	0.68	-11	-0.79
Saitali	3900		4350	4730.54	4488.75	-241.79	1.15	-0.1	138.75	28.11	213.75	95	0.062	-3455.35	16.0	m	0.11
Pungani	3600	366.66	6820	7186.66		4013.34	3.11	1.11	4380	0.82	560	160	0.097	23096	6.75	117	7.42
G.D.duba	3800			0777		-770	1.94	-0.2	-420	1	350	175	0.055	-269.22	-0.93	11	0.92
G.B.Jop.	3800			7316.66	11200	3883.34	2.95	1.02	4300	0.88	560	160	0.097	22193	6.01	107	6.84
M.beria	3600		6025	6408.33	8400	1991.67	2.33	0.56	2375	1.52	420	140	0.083	10478	3.48	62	3.91
T.borbil	3750			5274.16	00/1	2425.84	2.05	0.65	2830	1.33	385	110	0.097	13196	4.05	72	4.52
M.disoi	4450	433.33		4083.33	5040	956.67	1.13	0.21	1390	3.2	280	80	0.097	3686	1.74	28	1.82
B.khosa	3400	338.88		4688.88	4	298.62		60.0	637.5	5.3	237.5	95	0.069	127	1.03	13	1.04
Bindia	3300	316.66		3626.66		223.34	1.17	0.07	540	6.11	175	02	0.069	-269.22	0.92	<u>5</u>	0.92
T.danga	3650	412.5		7232.5		767.5	2.19	0.21	1180	3.09	400	160	0.069	2979	1.69	28	1.82
M.dikhow	3550	387.5	6020	6407.5	0002	592.5		0.17	980	3.62	350	140	0.069	1944	1.47	23	1.55
Batha	3450	350		5570	3240	-2330	0.94	-0.7	-1980	. 1	147.2	120	0.034	-15934.17	-3.33	-56	-3.62
M.dipling	3450	362.5		6382.5	5600	-782.5	1.62	-0.2	-420	.1	254.5	125	0.055	-6517.53	-0.66	-12	-0.89
Raumari	3650	379.16	5220	5599.16	4560	-1039.16	1.25	-0.3	-660	- - 	200	120	0.046	-8064.69	-1.03	-18	-1.21
		- 1															
Average	3577.6	362.4229	5964.49	6329.1504	6293.7	-55.0504	1.76	9	319.617	-0.916	315.774	136.8	0.0621633	-1985.2078	0.442	0.7551	0.417
								1									

"

,

	ŀ			NKR		8.7	0.00 16			2.36	11.19	10.37	5.48	12.69	3.76	-2.13	5.4	-1.71		1	-1.58	0.87	0.37	-1.06	1.12	5.17	16.5	-0.24	0.91	e	1.95	0.83	3
				IRR (%) NKR	54	74	34	5 12	62	39	170	156	84	183	59	-26	84	-22	-21	4	-122	6	11	-13	16	81	. 256	1.69	10	49	31	8	ŗ
				BCR	100	4.7.7	10.0				8.86	7.93	4.02	8.69	2.82	-1.31	4.39	-1.14	-1.13	0.21	-1.04	0.9	0.54	-0.69	1.09	4.21	14.32	60.0	0.93	2.68	1.74	0.87	
				NPV (Rs)	7075	0121	5995	19936	17473	8132	64252	49684	33616	93567	22073	-16579.72	27731	-12837.28	-13936.45	-5172.54	-12137.28	-629.41	-3333.12	-11744.53	621	26245	73641	-6552	-485.72	11009	5899	-973.34	
				CPGH (Kg) NPV (Rs)	0.014	0.012	0.012	0.065	0.02	0.016	0.025	0.026	0.016	0.021	0.018	0.007	0.018	0.008	0.008	0.00	0.008	0.011	0.01	0.01	0.011	0.024	0.016	0.009	0.011	0.015	0.027	0.065	
				Days	N.	85	38	85	55		95	02	140	180	80	80	120	120	140	85	6	95	90	90	06	80	140	60	80	75	80	85	
				T C/Year	440	403 75	427.5	552.5	440	292.5	950	735	910	1530	600	240	906	420	490	327.25	292.5	427.5	360	360	382.5	760	1170	337.5	360	450	440	552.5	
					2 23	5.36	2.59	1.06	1.42	2.37	0.54	0.58	1.04	0.47	1.45	: !	1.08	• 3 1	; -	22.32	4.7	5.29	8.55	115 1-3	4.31	1.13	0.37	18	4.91	1.94	2.27	5.36	
				NOI (Rs) PBP	2330	1082.5	2010	5460	4215	1812.5	11700	9185	7230	17080	5530	-1520	5800	-1100	-1195	224	-1000	925	620	-775	1160	5560	12790	100	1080	2835	2240	1082.5	
 1					0.32	8	0.25	0.79	0.54	0.29	1.7	1.6	0.8	1.98	0.54	-0.4	0.78	-0.4	-0.3	-0.1	-0.3	0.05	Ŷ	<u>6</u> .9	80.0	0.74	2.58	-0.1	0.06	0.39	0.22	0.04	
				CTORROR	1.86	1.53	1.97	2.3	1.54	1.02	3.16	2.91	2.55	14	1.57	1.08	2.57	1.97	1.96	1.57	1.49	1.92	1.63	1.39	1.84	2.53	5.17	1.53	1.56	1.71	1.49	1.53	
				(Rs) PAT (Rs)	1653.82	234.89	1294	4612.39	3240	1731.93	10725	8493.34	6021.67	15857.79	4307.79	-2261.66	4975	-1791.66	-1820	-496.23	-1591.66	283.34	-121.66	-1450	493.34	4670.72	12242.39	-641.66	338.34	2174.29	1379.29	234.89	
				T R (Rs)	9680	8882.5	10260	13260	9240	6142.5	19950	15435	19110	32130	12600	5760	16200	9240	10780	7854	7020	9405	8640	7920	9180	15960	24540	8100	8280	9450	9240	8882.5	
		of Dhenkijal			8026.18	8647.61	8966	8647.61	5828	4410.57	9225	6941.66	13088.33	16272.21	8292.21	8021.66	11225	11031.66	12600	8350.23	8611.66	9121.66	8761.66	9370	8686.66	11289.28	12297.61	8741.66	7941.66	7275.71	7860.71	8647.61	
		ors of DI		TOC (Rs)	7350	7800	8250	7800	5025	4330	8250	6250	11880	15050	7070	7280	10400	10340	11975	7630	8020	8480	8020	8695	8020	10400	11750	8000	7200	6615	2000	7800	
		Economic Indicators		C I (KS) Depr. (KS) 10C (KS) 1 C (KS)	676.18	847.61	716.18	847.61	803.57	803.57	975	691.66	1208	1222.21	1222.21	741.66	825	691.66	625	720.23	591.66	641.66	741.66	675	666.66	889.28	547.61	741.66	741.66	660.71	860.71	847.11	11 000
		onomic		CI (KS)I	5200	5800	5200	5800	6000	8000	6300	2300	7500	800	8000	5300	8300	4700	5500	2000	4700	4900	5300	2700	2000	6300	4750	2300	2300	5500	6200	5800	00000
		Table-4.8 Ec	-	Reel	Sagamara	Borbilla	B.kamak	Deepar	Mori	Bormon	Udori	N.karmari	Satiyan	Siyale	D.patali	B.maijan	D.bakri	R.megna	Sagar	Gophar	Angang	Sone	Saitali	Pungani	G.D.duba	G.B.Jop.	M.disoi	B.khosa	Bihdia	T.danga	m.dikhow	Batha	At dialing

,

2.53	2.15		3.107				Γ	KR	Γ	11.17	7.59	4.48	9.37	4.72	16.84	11.06	10.19	8.09		9.279	
42	8		45.313				┢	IRR (%) NKR	 	174	120	72	142	75	L		156	<u> </u>		143.56	
2.24	1.93		2.6					BCR	 	9.67	6.87	4.04	7.49	4.09	14.36	8.88	8.42	7.16		7.887	
7975	6001		13387.364	·					,	48840	33614	17736	41032	16184	80767	48806	48713	29105		40533	
0.014	0.012		0.018					CPGH (Kg) NPV (Rs)		0.015	0.013	0.012	0.013	0.012	0.016	0.014	0.014	0.013		0.0135556	
80	8		92.26		·					140	160	185	140	160	160	140	140	140		151.7	
440	427.5		543.823					T C/Year Days		1330	1360	2220	1750	1240	1680	1330	1330	1190		1492.22	
2.23	2.59		2.77							0.55	0.8	1.35	0.64	1.26	0.36	0.55	0.59	0.75		0.761	
2330	2010		3387.63					CTORROR NOI (Rs) PBP		8800	6355	3790	7650	3460	14025	8885	8930	5465		7484.44	
0.32	0.25		0.42					ROR		1.73	1.15	0.64	1.45			1.73	1.58	1.23		1.43	
1.86	1.97		2.35					CTOR		6.65	6.4	9.57	8.57				6.02	6.97		7.28	
1653.82	1294.82	- 1	2617.766					PAT (Rs)		8288.89			7116.67	Ň		83				6984,447	
9680	10260		11687.8					TR (Rs)		31920	32640	48840	42000	29760	40320	31920	31920	28560		35320	
8026.18	8966		9064.5158			Economic Indicators of Horhorijal		T C (Rs)		23631.11	26793.33			30	- 1	33	23525			28335.553	
7350	8250		8300.16			ors of H		TOC (Rs)									•	23095		27835.6	
676.18	716.18		787.6987			Indicat		C I (Rs) Depr. (Rs) TOC (Rs) T C (Rs)		511.11	508.33	508.33	533.33	480.55	495	503.33	535	425		499.9978	
5200	5200		5711.3		-1. _1	onomic		CI (Rs)		4800	5100	5100	4900	4350	5100	4850	5300	4100		4844.4	
Raumari	Gathia		Average			lable-4.9 Ec		Beel	•	Siliguri	Mori	Bormon	Jaluguti	Kaso	Kuji	Deora	Udori	N karmari		Average	

found to be 45%, which indicates the over all economic viability of the gear in the beel fisheries of Assam.

(vii) Net benefit-Cost Ratio (N-K ratio): The N-K Ratio, which should be equal to or more than unity to become economically viable, is found to be viable in 19 cases out of 31 total surveyed beels. In 12 beels the ratio is found below the viable range of which in 7 cases, such as Brahmamaijan (-2.13); Rani-megna (-1.71); Sagar (-1.53); Gopharchang (0.03); Angang (-1.58); Pungani (-1.06); and Botalikhosa (-0.24), it is found to be negative. The average of the ratio is recorded at 3.107, which of course indicates the viability if the gear in over all cases.

Thus, above analyses indicate that *ghatjal* is not viable in all the beels (12 out of 31 total surveyed beels) under present study. Moreover, the efficiency of the gear varies from beel to beel. On the basis of B-C ratio and N-K ratio, it is clear that the gear is able to provide maximum benefits at least cost in certain conditions only, which must be evaluated prior to it's application.

4.4.9 ECONOMIC ANALYSIS HORHORIJAL

It is conical in shape, bag-like, 8-10m in length and 6-8m in circumference at the mouth. The net is used during October to January. It is found to be operated in pit free river-like beels. During the survey period data and information regarding economic analysis were available in only 9 beels out of 56 total surveyed beels. In another 47 beels data were not sufficient for the purpose of economic evaluation. Hence, the economic evaluation of the gear has been worked out in 9 beels to find out its viability in the beel fisheries of Assam. The economic parameters of *horhorijal* (table-4.9) has been described below:

4.4.9.1 Catch and Effort

Horhorijal is found to be operated between 145–185 days for commercial purposes in the beel fisheries of Assam. The use of the gear is recorded in only 9 beels i.e. 16% of the total beel surveyed. The catch per day, as recorded, is maximum in Jaluguti beel (12.5 Kg) whereas it is found minimum in Kasodhora beel (7.75 Kg). But the annual catch is found to be maximum in Bormonoha beel (2220 Kg) where as minimum in Nandini karmari beel (1190 Kg) with an average of 1492.22 Kg in 152 days of operation. The CPGH is recorded in between 0.012 to 0.016 with an average of 0.0136 Kg in a year.

4.4.9.2 Capital Investment and Depreciation

The total acquisition cost of *horhorijal* is found in the range between Rs.4100/-(Nandini-karmari) to Rs.5300/- (Udori) with an average of Rs.4844/-. Accordingly, the fixed cost or the depreciation is found between Rs.425/- to Rs.534/-, which is recorded in Nandini karmari and Udori beel respectively. The average depreciation is found to be Rs.499/- in a year.

4.4.9.3 Total Cost

The total cost for the operation of horhorijal has been segregated in terms of fixed cost and variable cost.

Fixed cost: Fixed cost, which is the depreciation of the boats and gear, has been described under 4.4.9.2.

Variable cost: The variable cost or the operating cost, which includes labor costs and repair and maintenance of gear and boats, is found between Rs.22990/-(Udori beel) to Rs.45050/- (Bormonoha beel) with an average of Rs.27835/-. The variations of the

operating costs in different beels are mainly attributed by the number of labor employed in fishing and number of days of operation per year.

Accordingly, the total cost is calculated to be the maximum in Bormonoha beel (Rs.45558/-) and the minimum in Nandini karmari beel (Rs.23520/-) with an average of Rs.28335/-.

4.4.9.4 Revenue

The data on catch in terms of quantity and value realized were observed on daily basis and calculated for per annum like other gears. The average weighted value of fish is found between Rs.22/- to Rs.24/-. The gear shows to earn a maximum of Rs.48840/- (Bormonoha beel) and a minimum of Rs.28560/- (Nandini-Karmmari beel) with an average of Rs.35320/- in a year.

4.4.9.5 Economic Viability

The relevant data for cost and return analysis was recorded at beel site to evaluate the economic viability of *horhorijal*. All the data and information was recorded at beel site on per day basis and then converted as per annum to find out the economic viability of the gear. The different economic indicators (table-4.9) has been described below:

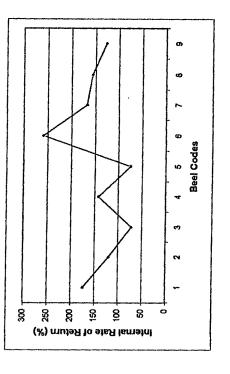
(i) Capital Turn Over Ratio (CTOR): The capital turn over ratio is found maximum in Bormonoha (9.57 times) and minimum in Udori (6.02 times). The average CTOR is found to be 7.28 times, which is around 7 times of the economic viable range. Moreover, in all beels under study it is recorded within the feasible range.

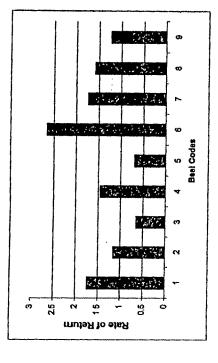
(ii) Rate of Return (ROR): The rate of return, which should be 12% or more to become economically viable, is found within the viable range in all the cases under

the present study. The maximum ROR is recorded in Kujibalipatti beel (265%) whereas the minimum is found in Kasodhora beel (65%) with an average of 143% in a year.

(iii) Pay Back Period (PBP): The pay back period is recorded in between 0.55 year (Siligurijan beel) to 1.26 year (Kasodhora beel) with an average of 0.76 year, which indicates the economic viability of the gear in the cases under study. (vide page no.80)

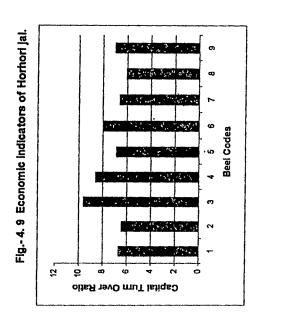
(iv) Benefit-Cost Ratio (B-C Ratio): The B-C Ratio is found within the range of 4.09 (Kasodhora) to 14.4 (Kujibalipatti) with an average of 7.89. Thus, in all beels the ratio is recorded within the economic viable range in the beel fisheries of Assam.

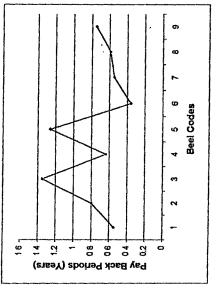

(v) Net Present Value (NPV): The NPV, which should be positive, is recorded from Rs.16184/- (Kasodhora) to Rs.80767/- (Kujibalipatti). The annual average is found to be Rs.40533/-, which indicates the economic feasibility of the gear as far as the present survey is concern.


(vi) Internal Rate of Return (IRR): The internal rate of return, which should be above 12% to become viable is also found between 72% (Bormonoha) to 259% (Kujibalipatti beel) with an average of 144%.

(vii) Net benefit-Cost Ratio (N-K Ratio): The net benefit investment ratio (N-K ratio), which should be equal to or more than one is found within the economically feasible range and recorded between 4.72 (Kasodhora beel) and 16.84 (Kujibalipatti beel). The average of the ratio is found to be 9.279, which suggests that the gear is highly beneficial for the beel fisheries of Assam as far as the present study is concern.

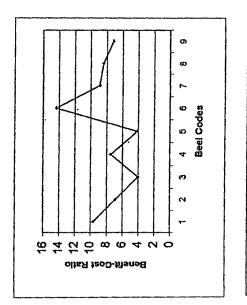
Thus, the economic and financial analysis of *horhorijal* indicates that the gear is economically feasible in the beel fisheries of Assam. Moreover, on the basis of B-C ratio and N-K ratio, it is clear that the gear is able to provide maximum benefits at least cost.

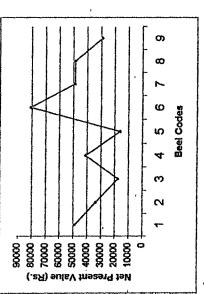




r

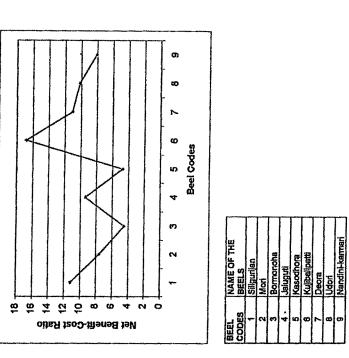
.





\$

· ' .



,

.

NAME OF THE	BEELS	Silgurian	Mori	Bormonoha	Jaluguti	Kasodhora	Kujibelipetti	Deora	Udori	Nandin-karmani	
BEEL	CODES	٢	2	3	4.	S	8	2	8	σ	

•

4.4.10 ECONOMIC ANALYSIS PARANGIJAL

Parangijal is also known as *dharmajal* or *sipjal* and is used in almost all beels but the data for financial analysis were available in only 14 beels out of 56 numbers of total surveyed beels for the present work. The net is used mostly during high flood when other gears fail to do the fishing purpose.

The economic analysis of the gear has been worked out with the same objectives as described earlier in this chapter and the results of the analysis (table-4.10) has been described below:

4.4.10.1 Catch and Effort

The gear is found to be operated from 80 days (Deora beel) to 180 days (Solmari and Baskandi beel) with an average of 126 days in a year. The catch per annum is recorded maximum in Chandakhal beel with 1425 Kg whereas it was minimum in Bhoispuri beel with just 266 Kg with an annual average of 504.25 Kg. As far as the study of CPGH is concern, it is found in between 0.0038 (Baskandi) to 0.0198 Kg (Chandakhal) with an average of 0.0082 Kg in a year.

4.4.10.2 Capital Investment and Depreciation

The total acquisition cost or the capital investment for *parangijal* is found between Rs.4100/- (Merkolaberia) to Rs.8500/- (Sagar beel) with an average of Rs.5796/-. But in Tinsuliborbil where no boats are used for the operation the capital investment is recorded only Rs.500/-. Accordingly, the fixed cost or the depreciation is found between Rs.420.23 (Kasodhora beel) to Rs.1333.33 (Jogra beel) with an average of Rs.807/-. But in case of Tinsuliborbil it is just Rs.125/- due to lack of depreciation of boat.

4.4.10.3 Total Cost

The total cost in the operation of the gear is segregated into fixed cost and variable cost, which are described below:

Fixed cost: The fixed cost in this case is the depreciation, which has been described under the subhead 4.4.10.2.

Variable cost: Variable costs or the operating costs for the operation of *parangijal* is recorded between Rs.4050/-(Deora beel) to Rs.14890/- (Solamari beel) with an average of Rs.9664/- in a year.

Accordingly, the total cost for the operation of the gear is found between Rs.4494.44 (Deora beel) to Rs.15323.34 (Solmari beel). The average total cost in case of *parangijal* is found to be Rs.7043/- in a year.

4.4.10.4 Revenue

The data on catch in terms of quantity and value realized were observed on daily basis and calculated for per annum like other gears. The average weighted value of fish is found between Rs.22/- to Rs.24/-. The total revenue earned from the operation of the gear ranged from Rs.5852/- (Bhoispuri beel) to Rs.31500/-(Chandakhal beel) with an average of Rs.10960/- in a year (table-4.10).

4.4.10.5 Economic viability

All the relevant data were collected to find out the economic viability of the gear. The different economic indicators as represented in table-4.10 have been described below:

(i) Capital Turn Over Ratio (CTOR): The capital turn over ratio, which should be equal to unity to become viable, is found within the feasible range in 11 cases (78.57% cases). In another 3 cases the ratio is below the viable range. The ratio is found between 0.07 times (Tinsuliborbil) and 3.94 times (Chandakhal) with an average of 1.75 times, which indicates the over all viability of the gear in the beel fisheries of Assam.

(ii) Rate of Return (ROR): The ROR, which should be 12% or more to become economically viable, is found between 2% (Bhoispuri) and 297% (Chandakhal) with an annual average of 73%. Out of 14 total surveyed beels in 11 beels the ratio is found above the economic viable range. In another 3 cases, such as Barundanga (3%), Bhoispuri (2%), and Kasodhora (7%) the ratio is recorded below the viable limit.

(iii) Pay Back Period (PBP): The PBP in this case should be below 2 years to become economically viable. Table-4.10 shows that in maximum cases (8 beels out of 14 beels) the PBP is found above 2 years. It is recorded between 0.32 (Chandakhal) to 7.73 years (Barundanga beel). The average PBP is found to be 2.79, which indicates the economic non-viability of the gear in over all cases. (vide page no.80)

(iv) Benefit-Cost Ratio (B-C Ratio): The benefit cost ratio study reveals that the gear is not viable in Barundanga (0.49) and Bhoispuri beel (0.77). In another 12 cases it is recorded between 1.0 (Solmari) to 12.8 (Chandakhal). Out of 12 in 8 beels the B-C ratio is found up to 4 times whereas in another 4 beels the ratio exceeds above 6 times. The annual average of the ratio is found to be 3.68, which suggests the economic viability of the gear in all the surveyed beels.

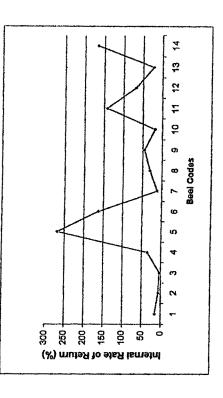

(v) Net Present Value (NPV): The NPV, which should be always positive to become economically viable, is found negative in Barundanga (Rs.-5876/-) and Bhoispuri (Rs.-2633/-) beel. In another 12 cases it is recorded within the feasible range and found between Rs.27/- (Kasodhora) and Rs.142901/- (Chandakhal). The average of NPV is found to be Rs.21217/-.

Table-4.10 Economic Indicators of Parangijal

.

Γ		NKR		1.13	0.22	0.64	1.99	18.86	10.35	F	2	2.79	1.28	9.33	4.35	1.5	12.7	4.867		Γ		Τ
		IRR (%) NKR		151	9	e	35	268	163	12	31	45	181	142	68	22	167	71.071				T
	+	BCR	+	1.08	0.49	0.77	1.65	12.75	9.38	F	1.91	2.6	1.21	7.31	3.25	1.43	6.74	3.684		-	+	
		NPV (Rs)		994.5	-5876.14	-2633.24	7898	142901.9	42086.2	26.69	5003.3	8040.3	1507.46	60687.8	28505.9	2054.41	5851.07	21217.725				
		CPGH (Kg)		0.0062	0.0052	0.0058	0.0073	0.0198	0.0104	0.0058	0.0073		0.0038		0.0094	0.0094	0.0047	0.0082071				
		Days		120	110	95	120	150	180	120	100	80	180	120	120	110	160	126.1				
		T C/Year Days		360	275	266	420	1425	006	336	350	280	332.5	720	540	495	360	504.25				
		РВР		3.83	7.73	5.24	2.47	0.32	0.59	5.5	2.94	2.13	2.21	0.64	1.28	3.74	0.45	2.791				
		NOI (Rs) PBP		1960	970	1392	3240	25050	7610	718	1700	2110	2402.5	10140	6655	1095	1110	4725.18				
				0.12	0.03	0.02	0.24	2.97	1.6	0.07	0.23	0.37	0.32	1.43	0.63	0.15	1.97	0.73				
		CTORROR		•	0.81	0.8		3.94	5	1.53	1.26	1.37	1.32	2.43	1.39	2.54	0.07	 1.75				
		PAT (Rs)		890.57	-210.57	150.34	1906.67	23827.79	7176.66	297.77	1158.34	1665.56	1710.84	9265	5386.12	631.92	985	3917.286				
,		T R (Rs)		7560	6050	5852	8820	31500	22500	6048	6300	6160	6982.5	15840	11880	10395	7560	10960.5				
8				6669.43	6260.54	5701.66	6913.33	7672.21	15323.34	5750.23	5141.66	4494.44	5271.66	6575	6493.88	9763.08	6575	7043.2471				
		TOC (Rs)		5600	5080	4460	5580	6450	14890	53330	4600	4050	4580	5700	5225	9300	6450	9663.93				
		C I (Rs) Depr. (Rs) TOC (Rs) T C (Rs)		1069.43	1180.54	1241.66	1333.33	1222.21	433.34	420.23	541 66	444.44	691.56	875	1263.88	463.08	125	807.5257				
•		C I (Rs)		7500	7500	2300	808	88	4500	3950	5000	4500	5300	6500	8500	4100	200	5796.4				
		Beel		Harin	B.danga	Bhois	Jogra	Chanda	Solmari	Kaso	Kuji	Deora	Baska	Tapang	Sagar	M.beria	T.borbill	Average	r			

44

ę

5

t

5

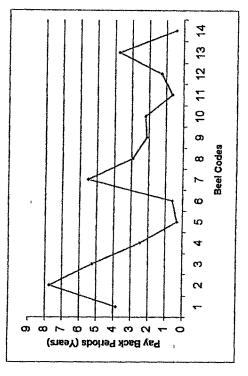
o

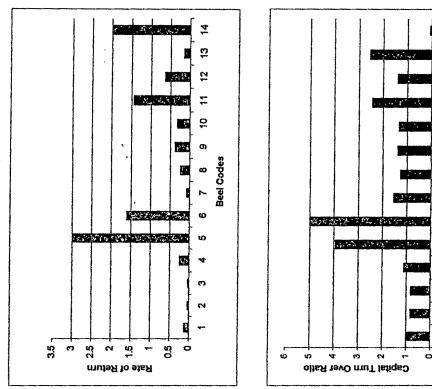
æ

5

ø

ທ

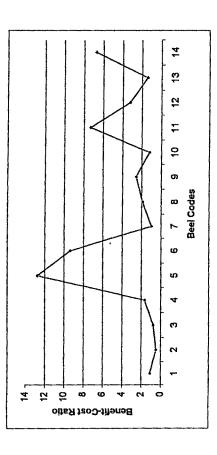

4

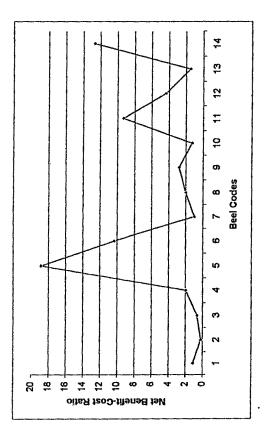

e

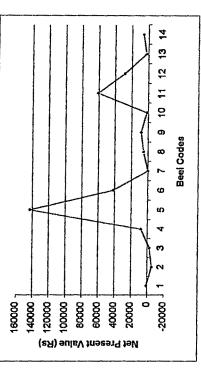
1.1 ~

2.7 ٠

o Beel Codes







۰.

Fig. - 4.10 Economic Indicators of Parangi Jai

NAME OF THE	BEELS Hannchora	amount	Bhoispuri	Jogra	Chandekhal	Solmari	Kesodhora	Kujibalipatti	Deora	Beskand	Tapang	Sagar	Merkola berta	Tinsuld borbill
BEEL	CODES	2	9	4	5	8	7	8	8	10	11	12	13	4

(vi) Internal Rate of Return (IRR): It is found 12% and above in 12 cases and is recorded from 12 (Kasodhora) to 268% (Chandakhal). In two beels, such as Barundanga (6%) and Bhoispuri (3%) the IRR is found below the economic viable range (i.e. 12%). The annual average IRR is found to be 71%, which of course shows the economic feasibility of the gear in the surveyed beels.

(vii) Net benefit Investment Ratio (N-K Ratio): The N-K Ratio is also found below the economic viable range in two beels, such as Barundanga (0.22) and Bhoispuri (0.64) beel. In another 12 beels, it is recorded between 1.0 (Kasodhora) and 18.86 (Chandakhal). The average of the ratio is found to be 4.867, which indicates the viability of the gear in the over all surveyed beels.

Thus, above analyses show that the gear is economically feasible in most of the cases as far as the present study is concerned, is found below the feasible range in two beels, such as Barundanga and Bhoispuri beel.

4.4.11 ECONOMIC ANALYSIS OF KATAL FISHING

.

Katal fishing or *katalmara* is a method, which is extensively used in the beel fisheries of Assam and account for a major catch. It is also known as *jeng* in lower Assam and was probably brought to this region by the migrating fishermen from the erstwhile East Pakistan (Yadav, 1981). Now-a- days it is an inseparable device of the beels of Assam.

Present study deals in details about the economic viability of *katal* fishing on the following objectives.

- (a) To examine the costs and return from *katal* fishing in different beels of Assam.
- (b) To work out economic feasibility of investment on katals, and
- (c) To work out its efficiency on the basis of some economic indicators.

4.4.11.1 Catch and Effort

The total catches from the *katals* in 33 beels of Assam has been shown in table-4.11. Each *katal* is found to be operated 2 to 5 times in a year. A single operation of *katal* fishing needs at least two days and requires 12–45 labors, depending upon the size of the *katal* installed. The catch record is found to vary in different beels mainly due to difference in *katal* size. It is found between 580 Kg (Botuakamakhya) to 1300 Kg (Bormonoha) with an average of 950.76 Kg in a year.

4.4.11.2 Capital Investment and Depreciation

The average acquisition cost or the installation cost of a *katal* is recorded between Rs.16000/- (Jogra and Ganak-dubai-duba beel) to Rs.28000/- (Thekera and Tinsuliborbil), which includes only boats and gears. The average capital invetment for the installation of katal is found to be Rs.21697/-. Accordingly, the fixed cost, which includes the depreciation of boat and gear, is found between Rs.3333.34 (Jogra and Ganak-dubai-duba beel) and Rs.5666.67 (Thekera and Tinsuliborbil).

4.4.11.3 Total Cost

The total cost of the operation in *katal* fishing is segregated into fixed cost or the depreciation (Table-4.11) of boat and gears and variable costs. The difference between fixed and variable costs basically lies in the fact that while the fixed cost needed to be incurred even if the *katal* is not operated the variable costs are incurred

only when operations are conducted. The fixed cost and variable costs has been described below:

Fixed cost: The fixed cost for the *katal* fishing has been described under the subheading 4.5.2.

Variable cost: Variable costs or the operating costs in case of *katal* fishing includes repair and maintenance of gear and boat, cost of bamboo and tree stumps and wages of labors. As far as the present study is concern the maximum variable costs is recorded with Rs.9430/- in Ganak-dubai-duba beel whereas the minimum with Rs.4060/- in Botuakamakhya beel in Nalbari district with an average of Rs.6359/-.

Accordingly, the total cost for installation of a *katal*, is found to be a minimum of Rs.8046.67 (Solmari beel) and a maximum of Rs.14396.67 (Moridisoi beel) with an average of Rs.11251/- in a year. The variations in the total costs are due to the size of the *katal*, number of days of operation and the number of labor engaged during operation.

4.4.11.4 Revenue

The data on catch in terms of quantity and value realized were observed during landing in different beels. The mode of disposal of catches was by middlemen who brought the fishes at wholesale price and carried them to the market. The quality fishes were found to be sold @Rs.25/- per Kg while the intermediate group fishes @Rs.15/- per Kg. The study reveals that Tinsuliborbil beel earns the maximum revenue (Rs.38720/-) from the *katal fishing* in comparison to other beels while Botuakamakhya beel exhibits the lowest earning (Rs.10730/-). The average revenue in a year is found to be Rs.21232/-. The fluctuations in the total revenue generation is

mainly because of the productivity of the beels, size of *katal* installed, as well as habitat for quality fishes and condition of inlet channel from the river.

4.4.11.5 Economic Viability

- - ---

Using the information in earlier part of the analysis regarding various components of cost, life expectancy of crafts and gears, gross revenue based on total catches and its price realized per Kg, the viability of investment for K*atal* fishing has been worked out. The economic parameters (table-4.11) regarding the viability of *Katal* fishing in different beels have been described below:

(i) Capital Turn Over Ratio (CTOR): The capital turn over ratio, which should be equal to or more than one is found within the viable range in 16 numbers of beels (i.e. 48.5% of the total surveyed beels under present study). Of the viable case in most of the beels (15 out of 16 beels) the ratio is found below 1.5 times. In only one beel (Ganak-dubai-duba), it is found to be above 1.5 times. On the other hand in 17 beels (51.5% of the total surveyed beels) the ratio is found below the economic viable range. The CTOR is recorded in between 0.54 times (Botuakamakhya) and 1.54 times (Ganak-dbai-duba) with an average of 0.99 times, which is just below the economic viable range (fig-4.11).

(ii) Rate of Return (ROR): The ROR should be 12% as suggested by planning commission to become economically feasible. The ratio is found within the viable range in 32 (96.97%) beels and is recorded between 12% (Kalidanga) to 98% (Tinsuliborbil) with an average of 48% in a year. In one beel (Botua kamakhya beel) it is found below the economic viable level and is recorded at 10%.

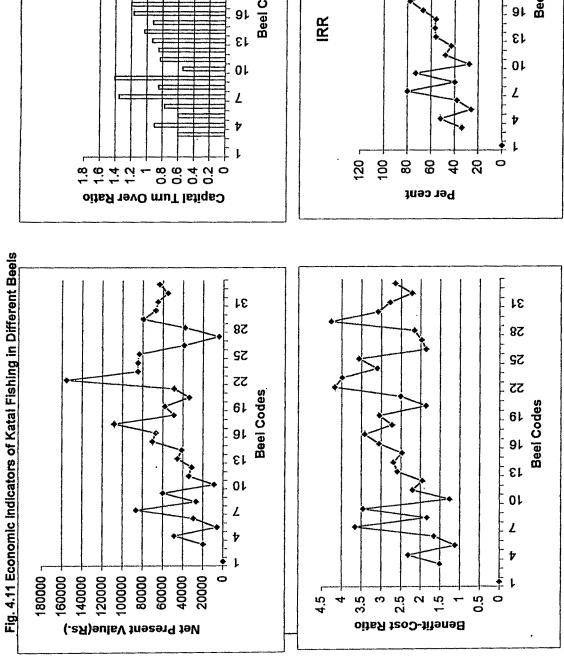
(iii) Pay Back Period (PBP): It should be below two years to become economically feasible, which is found within the feasible range in 28 beels (fig-11). In another 5 cases, such as Kalidanga (3.16 year), Harinchora (2.17 years), Borundanga (2.07

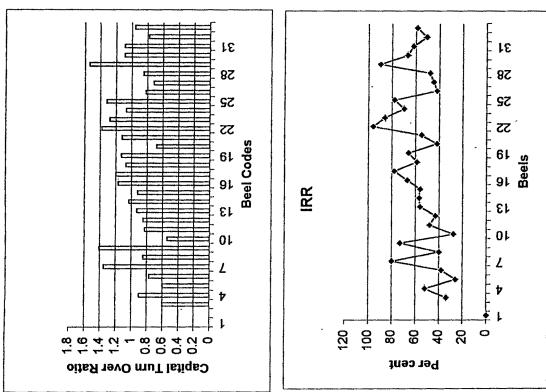
years), Botuakamakhya (2.99 years), and Angang (2.07 years); it is found just below the feasible range. (vide page no.80)

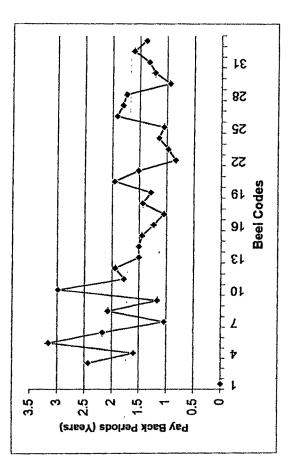
(iv) Benefit - Cost Ratio (B-C Ratio): For economic viability the benefit-cost ratio (B - C ratio) should be more than or equal to one. In the case of *katal* fishing the ratio exceeded unity in all of the beels under present study. Fig-4.11 shows that in 9 beels the ratio is found from 1 to below 2, in 13 beels it is found from 2 to below 3, in 9 cases the ratio is recorded from 3 to below 4, and finally, in 2 cases it is found above 4. The annual average of the ratio is found to be 2.61, which indicates the economic viability of *katal* fishing in the beel fisheries of Assam.

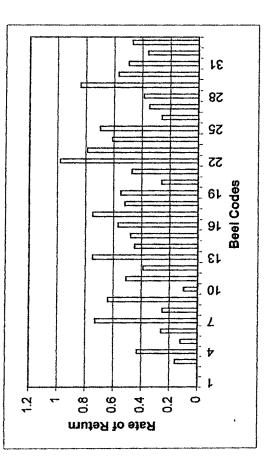
(v) Net Present Value (NPV): It should be more or equal to zero. In the case of *katal* fishing it shows the positive result in all 33 beels. In maximum cases (16 beels) the NPV is found below Rs.50000/- whereas in 14 beels it is found from Rs.50000/- to below Rs.100000/-. In another two beels (Bormonoha and Tinsuliborbil) it is found above Rs.100000/-. The average NPV is found to be Rs.54714/-, which indicates the economic feasibility of the *katal* fishing.

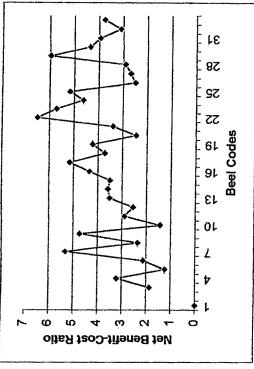
(vi) Internal Rate of Return (IRR): It should be more than 12% to become economically feasible. In cases of *katal* fishing it is recorded within the feasible range in all the cases. The IRR of *katal* fishing is recorded in between 26% (Kalidanga beel) and 96% (Tinsuliborbil) with an average of 57.52%, which indicates the economic viability of this fishing method in the surveyed beels.


(vii) Net benefit Investment Ratio (N- K ratio): The N-K Ratio should be more than or equal to unity. In the present study it is found between 1.24 (Kalidanga) to 6.5 (Tinsuliborbil) with an average of 3.63. In maximum cases (19 beels) the ratio is found between 2 and 4 (fig-4.11). In 11 beels it is recorded above 4 but in 3 beels the ratio is found below 2.


Table 4.11 Economic Indicators of Katal Fishin	conomic li	ndica	tors of K	atal Fish	ning 🐀 💷	÷ •			-		,		t			•
								$\left \right $								
			Depr (BellTOC (Bel		T C (Bel	T B (Rel	PAT (Re) CTOR		RORINOI (Re)		BPIMI	PBP(MNPVIRs.)	BCRIIR	R 1% N	KRIT (BCR/IRR(% NKR T.Cat (Ko)/Y
Deel	(ev) in	+-	1221 - 14-22					1_		T	1	\top	-	-		1
Hakama	3	23.000	5,666.67	4,520	10.186.67	13.975	3,788.33	0.6	0 16	9,455	2	19935.45	1.5	स्र	1.9	750
Nandini	10	2.000	4,166.67	6,200	10,366.67	19,950	9.583.33		0.43	13,750	1.6	48560.9	2.3	52	3.2	650
Kalidanda	5	26.0001	5.166.67	7.910	12.696.67	15,750	3 053.33	0.6	0.12	7,840	3.16	6172.6	1.1	26	1.2)	750
Hannchora		26.000	5,165 67	7,970	13,136.67	19.950	6,813.33		0.26	11,980	2.17	29558.42	1.7	38	2.1	1050
Bhoisnin		20.000	4,666.67	7.780	12,446,67	.	2	1.35 (0.73	19,220	1.04	86499	3.7	80	5.3	950
Barundanga		20,000	4,666.67	7,370	12.036 67		£	0.85 (0.25	9,630	2.07	27136.9	1.8	40	2.4	825
Joqra		16.000	3,333.34	9,040	12.373.34	22.650		41	0.64	13,610	1.17	59924.51	3.5	73	4.7	750
B.Kamakhva		20.000	4,666.67	4,060	8,726.67				0.1	6,670	2,99	8814.5	1.3	28	14	1300
Sagamara		18.000	5,666.67	4.880	10.545.67		4,453.33	0.83	0.51	10,120	1.78	34248.8	2.2	48	2.9	760
Siliqurian		20.000	6,666.67		`		1		0.39	10,300	1.94	31284.2	7	43	2.6	950
Solman		18.000	3,166.67	4,880		16.800			0.75	11.920	1.51	45390.8	2.6	2 9	3.5	720
Moribeel		16,000	3,333.34						0.45	10.590	1.51	41236.9	2.7	57	3.6	1125
Thekera		28,000	5,666.67		12,291.67	25.875		0.92	0.48	19,250	1.45	70369.5	2.5	- 56	3.51	925
N.Karman		20.000	4,666.67		11,986.67		11,413.33	1.17	0.57	16,100	1 24	67062.4	3.1	67	44	1200
Bormonoha		26.000	5,166,67		ľ.		5	1.2	0.75	24,730		108369.5		78	5.2	950
Sativan		18.000	3,166.67	6,850	ľ		9.370.83	1.07	0.52	12,538		49210.03	2.7	59	3.7	1200
D.Patalı		18.000						1.13	0.55	13,985	1.29	58173.15		99	4.2	850
Pungani		23.000	Į –					0.68	0.26	11,680	-	33708.2	1.9	42	2.5	- 800
Ganak-Dubai-Dub		20.000	3,666.67	9,430	13,096.67				0.47	13,145	1.52	48894.75		55	3.4	1000
T Borbill		28.000			Ľ		r 1		0.98	33,010		155543.9	4.2	96	6.5	006
Bihdia		18.000						1.28	0.79	18,310				86	5.7	580
Botalikhosa		26.000	6.6	<u> </u>	12.026.67		15,813.33		0.61	22,480		·		22	4.6	850
G.B.Jopora		20.000	1	7 7,650			-		0.7	18,750		. 1		78	5.2	036
Moridisoi		26.000	6.666.67					1	0.26	13,545	1.92	ଞ୍ଚା	_	42	2.5	1160
Merkolabena		26.000		4					0.35	14,350			2	45	27	006
Teliadanga		20,000		7 5,500	9.166.67		0 7.753.33		0.39	11,420				48	~1	1150
D.B.Barya		16.000						- 1	0.84	16,790				06		1200
Baskandi		20,000	1			7 21.850			0.57	16,150			_	. 67	4	1200
Sibnaravanpur		22.000							0.5	16,417		65106.7	7 2.8	8	₹	1150
Satchaora		26,000]	7 4,350		7 20.500			0	16,150	1.61			51		750
Autibauti		23,000	0 5,666.67	7 5,520	0 11,186.67		9			16,530				20		1150
Rata		23,000		7 6.100	11.767		0 7,133.33			12,800				46	2	1050
Angand		24,000	0 6,000	0 7,115	5 13,115	5 24.725	5 11,610	1.03	0.48	17,610	2.07	68375.5		8	3.9	850
									- 1			- 1				12 010
Average		21,697		4,914.14 6,359.09	9 11,251.72	2 21,232.58	8 9,970.40	1 0.99	0.48	14,8/3.48	10.1	101.417.46	19.2 0	70.10	2.02	07.002


. .


Table 41 Fronomic Indicators (%)


ı

Name of the	Beels	Hakama	Nandini	Kalidanga	Harinchora	Bhoispuri	Barundanga	Jogra	B.Kamakhya	Sagamara	Siligurijan	Solmari	Monbeel	Thekera	N.Karman	Bormonoha	Satiyan	D.Patali	Pungani	
Beel	Codes	**	2	3	4	S	9	7	8	6	10	11	12	13	14	15	16	17	18	

Name of the	Beels	Ganak-Dubai-Duba	T.Borbill	Bihdia	Botalikhosa	G.B.Jopora	Moridisoi	Merkolaberia	Teliadanga	D.B.Baiya	Baskandi	Sibnarayanpur	Salchapra	Autibauti	Rata	Angang	
Beel	Codes	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	

Thus, above analyses indicate that the method of *katal* fishing is economically feasible as far as the present samples study is concerned. The basis of B-C ratio and N-K ratio, it is clear that the method of *katal* fishing is able to provide maximum benefits at least cost.

- 1

DISCUSSION

Ten gears such as *musarijal, dolijal, berjal, phansijal, langijal, khewalijal, hook and line fishing, dhenkijal, horhorijal*, and *parangijal* have been considered for economic evaluation due to their extensive use in the beel fisheries of Assam and accordingly all relevant data and information have been collected during the survey. But for the purpose of economic analysis data on catch and return have not been found sufficient. Out of 56 total surveyed beels data and information for economic evaluation for *langijal* and *khewalijal* is found in 52 beels (94.55%), for *musarijal* and *phansijal* in 51 beels (92.73%), for hook and line fishing in 49 beels (89.09%), for *dhenkijal* in 31 beels (56.36%) for *berjal* in 25 beels (45.45%), for *parangijal* in 14 beels (25.45%) for *horhorijal* in 9 beels (16.36%), and for *dolijal* in only 8 beels (14.54%). A discussion has been made here on different economic parameters for all gears on the basis of results obtained from the analysis of data and information collected from the beel fisheries of Assam.

Catch and Effort

The average annual total catch is found maximum in case of *dolijal* (8573.75 kg) in an average of 141 days of operation with CPGH at 0.1354 kg. *Dolijal* is followed by *musarijal, berjal, horhorijal, langijal, dhenkijal, khewalijal, parngijal, phansijal* and *hook and line fishing* respectively (Table-4.12). Fig-4.12.F indicates that *phansijal, langijal, khewali, hook and line fishing* and *dhenkijal* exhibits almost equal total catch, whereas the maximum catches are obtained by *dolijal, musarijal* and *berjal.* Total number of days of operation is found above 100 days for all the cases except *dhenkijal* (92 days). This is due to the fact that *dhenkijal* is used mostly in the monsoon season. In other seasons its use is negligible and fishermen depend on other gears.

Capital Investment (CI)

Capital investment (Fig.12.A) for acquisition of boats and gears is found to be higher in the case of *dolijal* with an average amount of Rs.48812/-, which is followed by *berjal* (Rs.43400/-) and *musarijal* (Rs39558/-). It is found below Rs.6000/- in case of *phansijal, langijal, khewalijal, dhenkijal, horhorijal* and *parangijal* but the minimum is recorded for hooks and line fishing at Rs.3577/-. The fluctuation in CI is mainly due to size of gear and number of boat required for the operation of gear. *Phansijal, langijal, khewalijal, hook and line fishing, dhenkijal* and *parangijal* required only one boat for the operation, therefore, their CI become very low in comparison to *dolijal, musarijal* and *berjal*.

Depending upon the CI the depreciation is found in the range between Rs.362/- (hook and line) and Rs.7569/- (*dolijal*).

Total Cost (TC)

Total cost in the present case includes operating costs and depreciation. Table-4.12 depicts that the operation cost is higher for *dolijal* (Rs.75325/-) followed by *musarijal* (Rs.60137/-) and *berjal* (Rs.52738/-). The operating costs for *phansijal*, *langijal*, *khewalijal*, *hook and line*, *dhenkijal* and *parangijal* does not exceed Rs.10000/-. The operating costs in this case includes wages of labor, number of labour engaged at the time of fishing, and repair and maintenance of boats and gears. In case of *dolijal*, *musarijal* and *berjal* due to their large sizes require more fishermen (8-14 person) in

comparison to other gears such as *horhorijal* (3-4 person), and *dhenkijal*, *phansijal*, *langijal* (1-2 person). But *khewalijal*, hook and line and *parangijal* require only one person, hence their operation costs are found very low in comparison to *dolijal*, *musarijal* and *berjal*.

Accordingly, TC (Fig-4.12.C) is found high for *dolijal, musarijal* and *berjal* in comparison to other gears.

Revenue

Revenue depends solely on catch and prices¹ of fish species. As shown in table-4.12.G, it is found maximum in the case of *dolijal* (Rs.214343/-) followed by *musarijal* (Rs.138332/-) and *berjal* (Rs.96760/-). In case of *phansijal*, *langijal*, *khewalijal*, *hook and line* and *parangijal* it is recorded between Rs.6293/- (hook and line) and Rs.12080/- (*langijal*). On the other hand, is able to earn Rs.35320/-. The revenue earn by *berjal* depends on the major and some of the intermediate fish groups. But *musarijal and dolijal* due to their smaller mesh size are able to catch all groups of fishes, hence, their catches as well as revenue is found higher than *berjal*. *Phansijal* and *langijal* are the entangling gears, which are very much species specific, thus their catches depends largely on availability of that particular species. Hook and line in not found dependable fishing method for commercial purpose because the catch is a matter of by chance. Thus, the revenue in case of *dhenkijal* and *parangijal* depends on the number of operations in addition to the availability of fish species in a particular beel.

ECONOMIC VIABILITY

The economic viability for ten gears such as mentioned earlier have been analyzed on the basis of seven criteria such as *Capital Turn Over Ratio*, *Rate of Return*, *Pay Back Period*, *Benefit-Cost Ratio*, *Net Present Value*, *Internal Rate of Return and* *Net benefit-Investment Ratio*. All the criteria regarding the economic viability of fishing gears have been discussed below:

Capital Turn Over Ratio

The ratio is found within the viable range in all the cases (Fig.4.12.H). It is found to be higher *horhorijal* (7.28 times) due to its higher revenue against the capital investment. In other cases such as *musarijal, dolijal, berjal, phansijal, langijal, khewalijal* and *dhenkijal* it is found above 2 times whereas in case of hook and *parangijal* the ratio is found below 2 times but within economically viable range.

Thus, the ratio depicts that all the gears under generate revenue within the economic feasible limit against their capital investment.

Rate of Return

Rate of return, which depends on profit after tax (net cash flow), is better in case of *dolijal*, which is followed by *musarijal* (198%), *horhorijal* (143%), *berjal* (102%) respectively. In case of *phansijal* and *langijal* also it is found 85% and 86% respectively, which is better than *dhenkijal* (42%) and *parangijal* (73%). The ratio is recorded below the economic viable range in case of hook and line (-1%). It means except hook and line fishing, all the other gears under study are able to generate good profit against their respective capital investments.

Pay Back Period

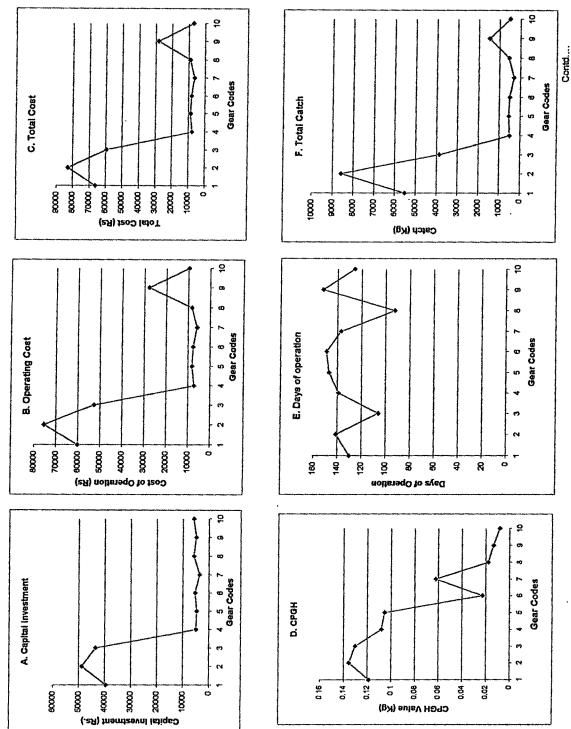
Pay back period (Fig.4.12.J) is found better in case of *horhorijal* (0.76 year), *dolijal* (0.84 year), *musarijal* (1.12 year), *langijal* (1.68 year) and *phansijal* (1.8 year). It means these gears are able to recover good benefit within minimum time. But on the other hand, *dhenkijal* (2.77 years), *parangijal* (2.79 years), *berjal* (4.6 years),

Khewalijal (12.1 years), and hook and line fishing (41 years) fail to provide benefit within the viable period.

Benefit-Cost Ratio

The ratio is found better in case of *dolijal* (11.03), which is followed by *muarijal* (9.16), *horhorijal* (7.89), *berjal* (4.81), *langijal* (4.57), *khewlijal* (4.37), *phansijal* (4.29), *parangijal* (3.68) and *dhenkijal* (2.6). But in case of hook and line the ratio is found below the economic viable limit (0.44). Thus from the study it is evident that except hook and line all other gears are able to earn sufficient profit margins against their total costs in their operation (Fig.-4.12.K).

Net Present Value

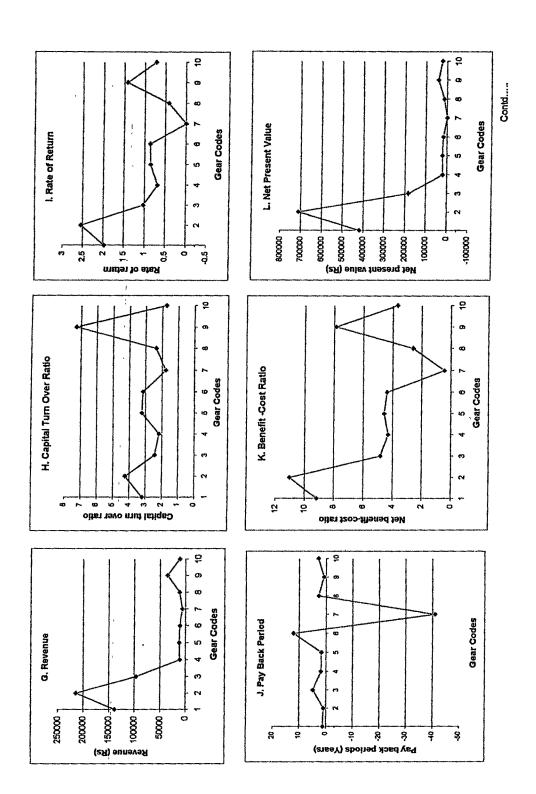

The study reveals that NPV (Fig.-4.12.L), in case of *musarijal*, *dolijal*, *berjal*, *phansijal*, *langijal*, *khewalijal*, *dhenkijal*, *horhorijal* and *parangijal*, is positive and found between Rs.13387/- (*dhenkijal*) and Rs.711700/- (*dolijal*). But in case of hook and line it is found o be negative indicating higher operational costs against the profit earn by the gear.

Internal Rate of Return

The IRR (Fig.-4.12.M) is found in the economic viable range in all the cases except hook and line, where it is found to be only 08%. Among the viable cases dolijal exhibits the higher IRR at 220% followed by *musarijal* (174%), *horhorijal* (144%), *berjal* (95.3%), *langijal* (86%), *Khewalijal* (84%), *parangijal* (71%) and *dhenkijal* (45%).

Net benefit-Investment Ratio

The ratio (Fig. 4.12.N) is found better in case of *dolijal* (14.68) in comparison to other gears. As far as the study is concern, *musarijal* (12.14), *berjal* (6.3), *phansijal*

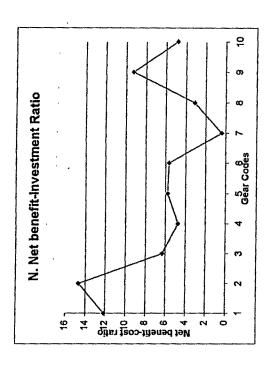


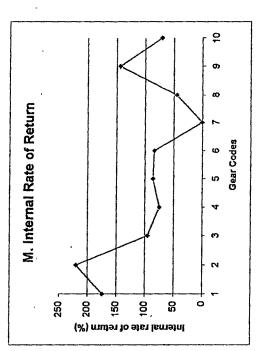
۱

Fig.12 Economical Parametra of Different Gears.

r,

,




.

,

,

.

NAME OF	GEARS	Musarijai	Dolijal	Berjal	Phansijal	Langijal	Khewalijai	Hook & line	Dhenkijal	Horhonjal	Parangjal	
GEAR	CODES		2	e	4	5	9	7	Ø	6	ç	

•

•

,

,

Table 4.12 Economic Indicators of Different Gears

.

.

-

-

ţ

ı

•

•			•				┢	┢─		-							<u>.</u>
Gear	C 1 (Rs)	C 1 (Rs) Depr (Rs) TOC (Rs) TC (Rs)	TOC (RS)	TC (Rs)	T R (RS)	R(RS) PAT(RS)	CTORROR NOI(RS)	OR N	7 I	PBP - 1	Cat/Y I	Days (T.Cat.Y Days CPGH (Kg) NPV (Rs)	NPV (Rs)	BCR	IRR(%)	NKR
			•														
Musanjai	39559	6455.93	60137.3	66136.33	138332	38332 72195.29	3.2	1.98	78349	1.12	5514.37	130	0.1187	416734.9	9.163	174	12.14
Dolifal	48813	7569.18	75325	82894.18		214344 131449.6	4.23	2.54	139019	0.84	0.84 8573.75	141	0.1354	711699.9 11.03	11.03	220	14.68
Berjal	43400	6711.04	52738	59449.04	96760.8	37311.76	2.44	1.02	44023	4.86	3859.1	106	0.13	182525.4	4.81	95.3	6.3
Phansijal	4910.8		568.68 7197.25	7611.62	11013	3305.91	2.16	0.68	3819.29	1.8	497.55	139	0.10786	18720.69	4.29	74.8	4.72
Langijal	4636.5	518.93	8142.5	8660.83	12079.6	3422.24	3.23	0.85	3941.1	1.68	547.18	147	0.1054	19417.33	4.57	,86	5.79
Khewalijal	5250	520.77	7548.37	8069.14	11208	3138.84	3.15	0.86	3646.5	12.1	505.12	149	0.0228	15606.26	4.37	84	5.66
Hook & line	3577.9		362.42 5964.49	6329.15	6293.69	-55.05	1.76	ò	319.62	41	315.77	137	0.0522	-1985.21	0.44	0.8	0.417
Dhenkijal	5711.3	1 787.69	8300.16	9064 52	11687.8	2617.77	2.35	0.42	3387.6	2.77	543.82	92.3	0.018	13387.36	2.6	45	3.12
Horňonjal	4844	500	27835.6	28335.55	35320	6984.45	7.28	1.43	7484.4	0.76	1492.22	152	0.0136	40533	7.89	144	9.28
Parangijal	5796.4	1 807.53	9663.93	7043.25	10960.6	3917.29	1.75	0.73	4725.2	2.79	504.25	126	0.0082	21217.73	3.68	2	4.867
														I			

.

.

*

¢

,

4

•

,

•

.

(4.72), *langijal* (5.76), *khewalijal* (5.66), *dhenkijal* (3.12), *horhorijal* (9.28), and *parangijal* (4.87), also show the economic viability in the beel fisheries of Assam. But on the other hand hook and line shows the ratio below the viable range (0.42) indicating less net benefit against the cost incurred in the operation of the gear.

Thus, the study of economic parameters shows that *musarijal, dolijal, berjal, phansijal, langijal, khewalijal, dhenkijal, horhorijal,* and *parangijal* are beneficial in the beel fisheries of Assam. But, hook and line fishing exhibits negative trends. As shown in Table-4.12, it is clear that in case of hook and line the total cost exceeds the amount of revenue, hence, the important economic parameters such as rate of return, pay back period, benefit-cost ratio, net present value, internal rate of return, and net benefit-investment ratio, are found below the viable limit. Only capital turn over ratio is found just above the viable limit (1.76 times). Therefore, it is clear that . . . the gear is able to generate sufficient revenue against the investment, but fails to meet the total cost requirement in fishing practices.

The economic efficiencies of different fishing gears in different beels of Assam have been discussed below:

Musari jal

The cost effectiveness study on *musari jal* (encircling gear) reveals that the operation of the gear is economically feasible and yields reasonably good profit margin in most of the beels (98.04%) under the present studied. But in Dighali-patali beel all the economic parameters are found below the viable range (Table-4.1). Out of 51 total surveyed beels CTOR in 4 beels, ROR in 1 beel, PBP in 6 beels, NPV in 1 beels, BCR in 1 beel, IRR in 1 beel and NKR in 1 beel is found below the viable limit.

Dolijal

In case of *dolijal* the data and information for feasibility study were available in only 8 beels, i.e. in 14.54% of the total surveyed beels. From the economic valuation it is clear that the gear can provide a good profit margin in all the cases against its

investment and operational costs. The gear needs higher capital investment, operating costs and total cost. Of the economic parameters ROR, B-C Ratio, NPV, N-K Ratio, and IRR (Fig-4.12) are found to be higher than the other gears. The study indicates that the gear is able to return better profit margins against its cost of installation and total cost.

Berjal

Berjal is found to be economically viable in most of the beels (80%) under study. It requires less capital investment and total cost than *dolijal* and *musarijal* but higher than *phansijal*, *langijal*, *khewlijal*, *hook and line*, *horhorijal* and *parangijal*. Of the economic parameters CTOR, ROR, and B-C Ratio, IRR, N-K Ratio is found less than *dolijal*, *musarijal* and *horhorijal* but better than *phansijal*, *langijal*, *khewalijal*, *hook and line*, *parangijal*, *and dhenkijal*. The NPV is also found higher than all the other gears except *dolijal* and *musarijal* (Fig.4.12).

Phansijal

The study of economic parameters show that the gear is economically viable in all the beels under study, but level of effectiveness is found to be higher in Baskandi, Ranimegna, Pungani, Gorimari-Bihdia-Jopora, Moridisoi and Teliadanga beel in comparison to other beels (Table-4.4).

As shown in fig.4.12, the capital investment, operating costs and total cost are found much lower in comparison to *musarijal*, *dolijal*, *berjal* and *horhorijal*. The economic indicators such as CTOR, ROR, PBP, and B-C Ratio, NPV, IRR, and N-K Ratio are found less than *musarijal* and *dolijal* and *berjal* but almost at the same level with *langijal*, *khewalijal*, and *parangijal*. On the other hand these ratios are found far better than *hook and line*, and *dhenkijal*.

Langijal

Langijal, which is also an entangling gear, is found in operation in 52 beels out of 55 total surveyed beels. As far as the study of economic viability indicators, such as

CTOR, ROR, NPV, BCR, IRR, and NKR, are concern the gear is found economically feasible in all the beels under present study, which indicate that the gear can provide sufficient benefit margin against the capital investment and total cost requirement for the operation of the gear. But, on the other hand, study of PBP (Fig-4.5) exhibits that in 12 beels (21.81% of the total surveyed beels) the gear can't provide the required profit margin within economically viable period (i.e. less than 2 years). In comparison to other gears *langijal* also shows similar results (Fig.4.12) as found in the case of *phansijal*.

Khewalijal

The cost effectiveness study on *khewalijal* reveals that the operation of the gear is economically feasible and yields reasonably good profit margins in most of the (98.04%) surveyed beel (Fig. 4.6). The level of effectiveness in terms of the average of economic parameters like CTOR (3.15 times), ROR (86%), PBP (12.1 years), NPV (Rs.15606/-), BCR (4.37), IRR (84%), and NKR (5.66) is found at same level with *langijal*. But beel-wise study shows that the gear is not economically viable in all the beels. Though CTOR is found below the viable range in only four beels, but ROR is found in below the viable limit on 11 nos. of beels of which 5 beels show negative results. Moreover, NPV, BCR, IRR, and NKR also recorded below the viable limit in 9 cases. It means, though the gear is able to earn sufficient revenue against its investment but fail to show required benefits against the total cost incurred for the operation of the gear.

Hook and Line Fishing

As far as the economic viability study is concerned in 49 beel fisheries of Assam, the averages of economic parameters for hook and line is found below the viable range. Though, CTOR is found above the viable range in 85.71% of the total surveyed beel, but other important parameters such as ROR, PBP, BCR, NPV, IRR, and NKR are found either negative or below the economic viable range in most of the beel (Fig-7). In comparison to other gear hook and line fishing is found to be least beneficial. From the study it is clear that though, in maximum cases the gear is able to earn good

revenue but it fails to meet the costs required during the operation including the opportunity cost of the fishermen.

Dhenkijal

The average CTOR for *dhenkijal* is found 2.35 times. It means the gear is able to earn sufficient revenue against the total capital investment as far as the study in 31 beels is concern. The average of ROR (42%), NPV (RS.13387/-), BCR (2.6), IRR (45%) and NKR (3.12) are found above the economic viable range, which means the gear is able to provide a feasible profit margin against the required operating cost. But, as far as the study of PBP is concern *dhenkijal* is found not to be economically viable and shows 2.77 years instead of 2 years or below to become viable. In comparison to *musarijal, dolijal, berjal, horhorijal* and *parangijal*, the gear needs less capital investment, operating cost and total cost. On the other hand, it requires higher capital investment and operating cost, but earns less profit than *phansijal, langijal,* and *khewlijal*.

Horhorijal

The data and information for economic evaluation of *horhorijal* were available in 9 numbers of beels only out of 55 beels. In other beels either the gear is not found in operation or data and information were not sufficient to work out economic evaluation. As far as the study in only 9 beels is concern the gear is found economically viable in all beels. Moreover, the gear is found more profitable in comparison to *phansijal, langijal, khewalijal, hook and line,* and *parangijal* (Fig-13 and 14). The average of economic parameters such as CTOR (7.28), ROR (143%), PBP (0.76 year), NPV (Rs.40533/-), BCR (7.89), IRR (144%), and NKR (9.28), are found above the viability limit (Table-4.12).

Parangijal

In case of *parangijal* also data and information are found in 14 numbers of beels out of 55 total surveyed beels. Of these beels the economic parameters such as CTOR and ROR is found below the viability level in 3 beels, but BCR, IRR, and NKR are found below the profitable limit in 2 beels only. NPV is also recorded as negative in 2 beels whereas PBP is found above 2 years in 8 numbers of beels. The average of economic parameters such as CTOR (1.75), ROR (73%), NPV (Rs.21217/-), BCR (3.68), IRR (71%), and NKR (4.87) are found above the economic viable limit but PBP (2.79 years) shows that the gear needs more than two years to recover the capital investment. Moreover, Fig-4.12 shows that the gear is more profitable than some other gears like *dhenkijal* and *hook and line* fishing.

From the economic viability study it is evident that only a few types of fishing gears, such as *musarijal, berjal, phansijal, langijal, khewalijal, hooks and line* and *dhenkijal* are being in use for commercial purpose in most of the beel fisheries of Assam. Some other gears, such as *dolijal*, and *horhorijal* are also used in the beels but their use is restricted in 8 and 9 beels out of the total 56 numbers of surveyed beels. Again, *parangijal*, which is also known as *dharmajal or sipjal*, though found in almost all beels but it is not use for large-scale fishing due to its poor catch.

It has been further observed that *musarijal, dolijal,* and *berjal* need higher capital investment and operating costs and are able to yield sufficient profit in most of the bels. On the other hand, *phansijal, langijal,* and *khewalijal* need comparatively less capital investment and operating costs but are able to provide a good profit margin. Therefore, these gears are most popular in the beels of Assam.

As far as the study is concerned, hooks and line fishing is found as the only fishing gear which is unable to provide benefit in the commercial fishing practices.

KATAL FISHING

Fishing methods in beel fisheries were diverse and some of them were unique. Common gear such as cast net, gill nets; dip nets and traps were in vogue though certain beels offer ample scope to practise *Katal* fishing (Yadav, et al., 1981). *Katal* fishing was recorded as the most viable indigenous fishing device in the beel fisheries of Assam. This method was found in 33 beels (60%) out of 55 beels under consideration for the study. The economic feasibility analysis revealed that *Katal* fishing was cost effective in all the samples under consideration of study. The economic indicators such as capital turn over ratio, rate of return, net present value, benefit-cost ratio, internal rate of return, pay back period and net benefit-investment ratio were recorded above the feasible range and indicated maximum benefits at least cost. Yadav, et al., 1981 also reported *katal* fishing as beneficial fishing device in the beel fisheries of Assam.

CONCLUSION

The above analyses on cost effectiveness showed that encircling gears (*musarijal* and *berjal*), gill nets (*langi jal* and *phansi jal*), trawling gears (*doli jal* and *horhori jal*) and scooping gears (*dhenki jal* and *parangi jal*) were the economically feasible gears and were in vogue in most of the beel fisheries of Assam. On the other hand economic indicators for hooks and line fishing were in negative in most of the cases. Thus fishermen should avoid the use of this gear for commercial purposes.