
CHAPTER-1

1.1 INTRODUCTION TO SINGLE CRYSTAL X-RAY DIFFRACTION

Crystallography is mainly concerned with the study of the atomic structure of 

matter in the crystalline state.

Single crystal X-ray diffraction over the last three decades, has revolution our 

insight about the molecular structures. The primary aim of the crystallographic studies is 

to obtain a detailed picture of the constituents of the crystal at the atomic level. A careful 

structure analysis provides a good deal of information about the bond lengths, bond 

angles, torsion angles, conformation and packing parameters, etc. These parameters are 

of utmost importance in establishing the relation of structural parameters to the chemical 

properties and it enables one to check on the nature of the theories of chemicals bonding. 

Starting with the study of the crystals containing few atoms in the early thirties, the 

single crystal X-ray diffraction technique has now been extended to the molecules of 

much greater complexity such as proteins, poly-nucleotides, enzymes, viruses, etc.

The brilliant experiment of Max von Laue in 1912, proved unmistakable that 

crystals behave like three dimensional gratings and that x-rays behave like wave. The x- 

ray crystallography is the only methods which give the stereochemistry of the molecule.

The basic principle o f the diffraction o f X-rays from the crystal specimen is used 

as a tool in the investigation o f the crystal structures. In a typical X-ray diffraction 

experiment, a parallel, monochromatic beam of X-rays is incident on a photograph or by 

a counter. The record of the scattered radiation constitutes the experimental data. The 

intensity data so called depends essentially on the specimen used and on the geometry of 

the experimental set up.
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The determination of a crystal structure normally proceeds in three distinct stages. 

The first is the measurement o f the intensities o f the Bragg reflections and the calculation 

of amplitudes from them, reduced to a common scale and corrected for various 

geometrical and physical factors. These amplitudes are known as ‘Observed structure 

amplitudes’ or ‘observed structure factors’. The second stage is the solution of the phase 

problem: the phase of the reflections cannot be measured directly, and yet they must be 

derived in some way before the structure can be solved by Fourier methods. Because of 

uncertainties in the amplitudes and phases, this first structure determination consists of 

retaining the approximate atomic positions so as to obtain the best possible agreement 

between the structure factors and the ‘calculated structure factors’ i.e. those calculated 

from the approximate atomic positions of the successive stages of refinement.

With the help of high speed computers, it became very easy to determine the 

structure within reasonable time.

The present work deals mainly with the three dimensional structure analysis of 

some medicinal plant compounds by x-ray diffraction method.

1.2 SOME THEORETICAL ASPECT OF CRYSTAL STRUCTURE 

1.2.1 THE CRYSTAL AND ITS SYMMETRY

The concept of ‘Space lattice’ i.e. the fundamental arrangement o f identical 

pattern units, the screw axis, glide plans, the theory of point and space groups etc. are 

developed by the early crystallographers. Bravais showed from symmetry considerations 

that there are 14 possible types of space lattices of which seven are primitive and other 

seven are face centered or body centered within the seven crystal system. The unit cell is 

the basic structural unit of a crystal. The unit cell is defined by three unit translations

a,b,c  and three inter axial angles a, P, y and the repetition of which in three
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dimensions constitute the whole crystal. The origin of the unit cell is chosen at some 

symmetrically convenient position. Each lattice point represents an atom or a group of 

atoms which are related by symmetry elements, and the space lattice is built up by 

repeating these regular intervals in three dimensions.

1.2.1(i)POINT GROUPS

The unit of pattern associated with each lattice point may itself possess symmetry 

and this symmetry is closely related to that of the crystal as a whole. There are only thirty 

two difference combinations of the external symmetry elements o f crystals. These thirty- 

two sets of symmetry elements are called point groups, because all the elements of any 

one group pass through one point which is at the origin of crystallographic axis chosen in 

conformity with morphological conventions.

Operation of any one o f the symmetry elements o f the point group will bring the 

crystal as a whole. That is the normal of the faces or the faces themselves if they are folly 

developed into a new orientation which is indistinguishable from the old. Repeated 

operation will ultimately return to its initial orientation. The external symmetry displayed 

by the crystal is dependent upon the atomic arrangement within the crystal itself, which 

in its turn depends upon the symmetry displayed by the atoms and molecules associated 

with each lattice point and which comprise what we have called the unit pattern. The unit 

of pattern may passes exactly the same combination of reflection planes, rotation and 

inverse rotation axes as does the crystal as a whole. When this occurs the point group 

symbol serves to designate both the internal grouping of the atoms round the lattice point 

and the external symmetry of the crystal
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1.2.1(ii) SPACE GROUPS

However the unit of pattern may possess symmetry elements which relate every 

point of the pattern with another by operations which involve translating this type of 

symmetry elements will have no place in point groups which are not concerned with 

translations. There are two such additional symmetry elements, called glide plane and 

screw axis, in accordance with which the unit of pattern is unaltered by the operation of a 

reflection across a plane, combined which a translation parallel to the plane (glide) or by 

a rotation combined with a translation in the direction of the rotation axis (screw). By 

repeated operation of the transnational symmetry elements the unit of pattern is brought 

into coincidence, not with itself, but with the corresponding group in an adjoining unit 

cell, and so on into the next cell and the next through the crystal lattice. These are 230 

different combinations of internal symmetry elements, which constitute the 230 different 

kinds o f extended three-dimensional framework into which the unit of pattern associated 

with each lattice point may be fitted to produce a periodic crystal lattice. They are called 

space group. Although the space groups must account for the symmetry relations 

extisting within the unit pattern, it feels as nothing about the actual arrangements of the 

atoms.

1.2.2 RECIPROCAL LATTICE

The concept of reciprocal lattice was first developed by Ewald in 1913 who 

expanded the idea in 1921. References to reciprocal lattice theory are so common in 

discussions o f X-ray diffraction from crystals that one is seriously handicapped without 

an understanding of it. From the well known Bragg equation we get

(1)
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This equation immediately suggests a reciprocal relationship between a d values 
in a crystal and the sine’s of the Bragg angles. For a (100) plane the equation may be
written as

sin# ioo=  (2)
/  z t < !00

We also know that
d im- d m /h (3)

Substituting the equation (3) in to equation (1)
sw.0 ,00= V  , (4)

/  M  ftOO

We have sin6> m =fiX!2dm (5)
We find the interesting relationship

sm̂ A00=/usin̂ 100 (6)
equation (6) means that if one known from X-ray data the value of d ioo be could salve 
for sin Gioofrom equation (2) and then one could solve for SinGhoo-

The real space Y corresponds to the space of the scattering material and the 
reciprocal space y* corresponds to the space the observed diffraction pattern. The
reciprocal lattice is defined by the unit translation vector a* ,b* ,c*  and the interaxial

* * * -* i*-*angles by cc , p  , y  which are related to the direct lattice a, b, c by

a.a *=b.b* = c .c  *=1

a.b *= a.c ’ =■ b.c ’= 0
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The scattering vectors S can be defined in terms of the reciprocal lattice as

S-/ia .,+kb*+y c* (8)

1.3 STRUCTURE AND ITS DETERMINATION FROM X-RAY DIFFRACTION 

DATA ANALYSIS

The crystal structure of a substance determines the diffraction pattern of that 

substance or more specifically, that the shape and size of the unit cell determines the 

angular positions o f the diffraction lines and the arrangement of the atoms within the unit 

cell determines the relative intensities of the lines. Since structure determines the 

diffraction pattern, it should be possible to go in the other direction and deduce the 

structure from the pattern. It is possible, but not in direct manner. If the structure of a 

substance is known, then we can calculate its diffraction pattern in a very straightforward 

fashion. But the reverse problem, that of directly calculating the structure from the 

observed pattern, has not yet been solved. The procedure adopted is essentially one of 

trial and error. On the basis of an educated guess, a structure is assumed, its diffraction 

pattern calculated, and the calculated pattern compared with the observed one. If the two 

agree in all detail, the assumed structure is correct; if  not the process is repeated as often 

as is necessary to find the correct solution.

The determination of an unknown structure proceeds in three major steps:

1) The shape and size of the unit cell are deduced from the angular positions of 

the diffraction lines. An assumption is first made on the basis of preliminary X-ray 

diffraction data to which of the seven crystal systems the unknown structure belongs to,
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and then, on the basis of this assumption, the correct Miller indices are assigned to each

reflection. Once this is done, the shape of the unit cell is known and its size is calculable

from the positions and Miller indices of the diffraction lines.

2) The number of atoms per unit cell is then computed from the shape and size of

the unit cell, the chemical composition of the specimen, and its measured density.

3) Finally, the positions o f the atoms within the unit cell are deduced from the

relative intensities of the diffraction lines with the help o f the computation method.

Only when these three steps have been accomplished is the structure determination 

complete.

1.4 SOLUTION OF THE PHASE PROBLEM BY DIRECT METHOD

The aim of the crystal structure analysis by X-ray diffraction is to locate the 

position of the atoms within the unit cell given by the maxima of the electron density

function. Therefore, if  we know l^ la n d ^ * 1, we can compute ^ (x , y, z) for all values 

to give a three dimensional electron density map. However, we can normally obtain only

the structures factor amplitude and not the phase angle ̂ hkl, directly from the

experimental measurements. So, ĥkl can be derived either from the values of 

A Rm and m that are computed from trial structures or by purely analytical methods. The 

problem of getting estimates of phase angles so that an image of the scattering material 

can be calculated is called the phase problem and is one of the crucial one in the X-ray 

crystal structure analysis the phase problem exists because.

1) We are unable to monitor the wave completely and accurately due to very high

frequency (~  10l8f2z) 0f  X-ray.
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2) If the phase measurement is to be meaningful the distance between the site at 

which we sample the diffracted wave and that at which we measure the reference wave, 

for comparison o f two waves, must be known accurately.

3) We cannot detect the phases of the diffracted waves because the emission of

X-ray occurs from a’ incoherent source’ in random event. As a consequence there are no

two well-defined phase relationships between the incidents waves and this prevents us

from measuring phase relationship between the diffracted waves.

To solve the phase problem, researchers have used various techniques such as 

Direct method1, Isomorphous replacement method2, Patterson Method3, Heavy Atom 

Method 4, and Anomalous Scattering Method5

1.4.1 DIRECT METHODS

Direct methods try to evaluate phases directly from the measured diffraction

intensities ^m  by using relationships among the phases whose values are based on the 

intensities. Therefore aim of the direct methods is to identify as many relationships as 

possible. Next the origin is fixed by specifying the phases of a few suitable reflections 

numerically. Then using the phase relationships, new phase are calculated. In this way it 

is not possible to phase all strong reflections. Thus the unknown phases of the remaining 

strong reflections can then be calculated by selection of a few more starting reflections. 

Thus when most o f the strong reflections have got a phase the numerical values of the 

unknown are evaluated and then using the following expression an image of the structure 

is produced.
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(9)

p(x,y ,z)  = ~  £  2 D | F m | c o s ( ( 2 ^ r ( / z x + ^ + l z ) - # A H ) )

Q _  R p  R b  

m
Y  =  mX  +  C  

R p=mX + C -

T h e s e  p h a s e  d e t e r m i n i n g  t e c h n i q u e  m a k e  u s e  o f  w e a k  a n d  s t r o n g  s t r u c t u r e  

f a c t o r s ,  t r i p l e t  r e l a t i o n s h i p s ,  s t r u c t u r e  i n v a r i a n t s  a n d  o r i g i n  f i x i n g  r e f l e c t i o n s  a n d  t h e  

p r o c e s s  o f  p h a s e  d e t e r m i n a t i o n .

1.4.2 STRONG AND WEAK STRUCTURE FACTORS
I f  i n  a  c r y s t a l  s t r u c t u r e  t h e  a t o m s  l i e  i n  t h e  n e i g h b o r h o o d  o f  t h e  s e t  o f  p l a n e s  

( h k l ) ,  t h e  r e f l e c t i o n  h a s  a  l a r g e  i n t e n s i t y  w h i l e  t h e  i n t e n s i t y  i s  s m a l l  i f  t h e  a t o m s  a r e  

r a n d o m l y  d i s t r i b u t e d .  T h i s  a l s o  f o l l o w s  d i r e c t l y  f r o m  t h e  s t r u c t u r e  f a c t o r  e x p r e s s i o n  ( 1 0 )  

b e c a u s e  a  l a r g e  F h k j  w i l l  o n l y

b e  f o u n d  i f  t h e  a t o m s  l i e  n e a r  p o s i t i o n s  f o r  w h i c h  ( h X j + k y j + i Z j )  a  c o n s t a n t  m o d u l e  1  f o r  

a l l  J. c o n v e r s e l y ,  a  s t r o n g  i n t e n s i t y  o f  ( h k l )  i m p l i e s  t h a t  t h e  e l e c t r o n  d e n s i t y  w i l l  p e a k  i n  

p l a n a r  r e g i o n  w h i c h  l i e  d h k i a p a r t .  T h e  c h o i c e  o f  t h e  o r i g i n  w i t h  r e s p e c t  t o  t h e s e  p l a n e r

L a r g e  a n d  s m a l l  s t r u c t u r e  f a c t o r  a m p l i t u d e s  t h u s  m a y  b e  u s e d  t o  p r e d i c t  w h e r e  i n  t h e  u n i t  

c e l l  e l e c t r o n  d e n s i t y  c a n  a p p r o x i m a t e l y  b e  e x p e c t e d .  M o r e o v e r  t h e  s t r o n g  a n d  w e a k  

r e f l e c t i o n s  h a v e  d i f f e r e n t  d i s t r i b u t i o n  w h e n  t h e  s p a c e  g r o u p  i s  c e n t r i c  o r  n o n - c e n t r i c .  T h e  

c e n t r i c  s p a c e  g r o u p  i s  p o p u l a t e d  b y  w e a k  r e f l e c t i o n s .

( 10)

r e g i o n s  o f  t h e  e l e c t r o n  d e n s i t y  d e f i n e s  t h e  p h a s e s  i n  e x p r e s s i o n  ( 1 0 ) .
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1.4.3 UNITARY AND NORMALIZED STRUCTURE FACTORS
Equation (2) shows that the scattering factor of an atom reduces exponentially

with the increase of ^  As a result the high angle structure factors fall with 
S i n 2 f t / 1 2> to overcome this problem the atoms are assumed as the point-atoms on 

normalizing the structure factors. The unitary structure factor is defined as the ratio o f the 
IF Istructure amplitude, > hkl' to its maximum possible value, i.e. the value it would have if

all atoms scattered exactly in phase. It is denoted by U. and 
contains the

U.m F,
h k l

where f

V m  = = £Xexp(2*r,.i)
Zf,temperature expression

So that \Um  j < 1 where n, is the unitary scattering factor defined by
( 11)

f ,
J  N

I
J - 1
Zf,

(12)

The normalized structure factors, E. introduced by Hauptman Karle6 is convenient to use 
in the probabilistic methods given by them and is defined as

E m
H k V

f  N  \ V 2
£ 1 / 2 i / ;V-M }

5 m 2 T / j  exp(2m>/) (13)

Where, V, - A
J  (  N  \

E / /
\ 2 = 1

i / 2
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The equation (13) is clearly the structure factor formulae of a point atom

of reflections. This factor depends on the crystal class7 and corrects for systematic 

absences and the resulting redistribution in intensity. The quantity includes both the

scaling factor and statistical weight of structure factor, which emanated from the overlap 

o f the atoms along various projections due to point group symmetry elements. Hence the 

is space group symmetry dependent.

In case o f equal atom structures,

In practice, the analytical methods o f phase determination are carried out on 

normalized structure factors i.e. the values of structure factor, |F |,modified to remove the 

fall-off in the individual scattering factors I , with increasing angle 2 0 .

1.4.4 WILSON STATISTICS (DISTRIBUTION OF INTENSITIES)

In general 50 space groups can be determined on examining the systematic 

absences in the diffraction pattern. For the identification of the remaining space groups, 

the intensity data statistics play a vital role . A.J.C. Wilson calculated two distribution 

functions, one for cetrosymmetric and the other for non-cetrosymmetric distribution of 

intensities by using the central limit theorem. This states that, “The sum of a large 

number of independent random variables will have a normal probability distribution with 

mean equal to the sum of the means of the independent variables and variance equal to 

the sum of their variances irrespective of the nature of distribution function of individual 

random variables”. We consider, a number, N of independent random variables Xj(j=l

to N) which have means Xj and variance a 7

structure. The^hkfis a small integer which makes the average E2 unity for any given class

(14)
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2
X  = " L XJ » x  = ^ X j  and a  2= £  

y»ij - i j

Here, the real and imaginary parts o f the contribution from all the atoms are considered 

as random variables.

x  j - f  j  eos(2xirj.s'j andy / } s\n{2mr ys ) .

The quantity 2nr}.s is assumed to be uniformly distributed between 0  to 2 n . Hence Xj 

and y j  have equal chances o f  being positive and negative.. So < X j > = 0  and < y j > = 0

The probability that Xj lie between x and x+dx and y, lies between y and y+dy is

P(x.y) dxdy =  p(x)p(y) dxdy =
1 , x2+y2

-exp(~ )dxdy (15)
ft? , 2ii

In the absence o f any symmetry element, die probability that the intensity 

( I  =x2+ y 2) lies between I and I+ d l, derived from equation (18) is

. i W r f i ^ e x p H / ^ )  (16)

N
where ^  /  J is the sum o f the square o f  atomic scattering factors o f all atoms.

j =i

In the presence o f an inversion center, the structure factor is real (i.e. yj =  O) and 

the distribution o f  intensities is calculated as

i
-exp(-

1

2n%L
2 1

-)dl (17)

After some simple arithmetic’s 8, the probability distribution equation (18) and (20) can 

be expressed in terms o f  |£l ’ s as

P(\E\)d\E\ =  2\E\exp(-\E2\)d\E\ (18)
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( 19)YP(\E\)d\E\ = - e x p ( - — )d\E\
i 7t 2

For any kind of distribution ( |£ 21> = 1 and the Wilson ratio is 

p  = (\E\) 2= n ! 4 = 0.785 for n.c.s

=2! n — 0.637 for c.s. (20)

The cumulative function9 N (z) the percentage o f reflections with normalized intensity 

less than equal to z is defined as

N (z )= j[  P{t)dt (21)

Where z = l/( l)  = jii|2 is the normalized intensity. Apart from the above types of

distribution, hypercentric10,11 intensity distribution arises when more than a molecule, 

each with a non-crystallographic center o f symmetry occupy general position in a 

centrosymmetric space group. An experimental data set is considered to be centric, 

acentric or hypercentric distribution. Also the probability distributions of intensities 

along various projections provide vital information regarding the space group symmetry 

elements.

1.4.5 HARKER-KASPER INQUALITIES

An extensive system o f inequalities exists for the coefficients o f a Fourier series, 

which represents a positive function. Inequalities among structure factors were first 

discovered by Harker and Kasper12. In more general term it is the positiveness of the 

electron density function P(r) which allows the inequalities among unitary structure 

factors that allow for the determination of the phases of the certain intense reflections in a 

centrosymmetric crystal. To do this Harker and Kasper used the Cauchy’s inequality and 

showed that for P 1 space group.
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(22)

This equation can be utilized to predict the sign of Uah, 2k, 21- The above inequality 

restricts the phase only of structure factors with indices of defined parity (2h,2k,2I in PI) 

. It is also possible to restrict phases o f reflections o f any parity by means of suitable in 

equalities. 5

1.4.6 TRIPLET PHASE RELATIONSHIPS

11Sayer derived an equality relationship between structure factors containing 

almost equal and well-resolved atoms and the electron density function P(r) and P2( r ) are 

alike and show peaks in the same position using the concept o f the ‘Squared density 

structure’ the structure factors o f such crystals must satisfy the relation

Where y  is the scattering factor of the squared atom and depends only on the magnitude 

of the reciprocal vector H and f/v (=k) is the overall scaling factor. This is the Sayer’s 

equation, valid for both centra and non centrosymmetrie structures and provides an exact 

linkage among the phases and the result is not restricted by the assumption of positive 

electron density.

By multiplying both sides o f equation (23) by F h i.e. F-h we obtain

lF *l (24)

For large values of |F H|,the left hand member will be large ,real positive. We may 

therefore, except that, the largest contributors to the summation on the right are also real 

and positive i.e. if  |F h,| and |jF h _h  | are large we get the relation
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(25)$  3 $  - H H  ^  (mod 2n)

which is known as ‘sum of angles’ formulae. Also the positivity o f electron density 

criterion leads to the phase addition formulae as proposed by Karle and Karale14"16in the 

from of

$  H ~  $  H H -H " (25a)

When several triplets are involved with a given H, the relation becomes,

~ H'r (25b)

Where < > H, implies a restricted set vector summation involving r\E\ values. This

equation is used in determining phases for non-centrosysmmetric structures.

For a centrosymmetric crystal the equation (25) reduces to

S(Eh)S(Eh,)S(Eh_h, )*+  1 (26)

Cochran and Zachariasen 17,18 individually showed that, even w hen |£ |5s are

smaller than the necessary to satisfy the inequality relation it could still be showed that 

equation (26) is probably true. The equation (25) and (26) are triplet relations expressed 

in a probabilistic way where S(H) represents the sign of reflexion. The vectors associated 

with these reflections d(H), d(H’), d(H-H’) from a closed triangle. In practice it may be 

possible to form several such vector triplets for given (hkl). If two of the signs in (26) 

are known. The third can be deduced.

1.4.7 PHASE DETERMINING FORMULAE

Karle and Hauptman derived a number of relationships between the structure 

factors. For space group PI, the basic Hauptman and Karle formulae can be expressed as
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yi i - s ( e  2 h ) 

1 ,2  •■*(.£„)

s(E Z -l)
' ^ E H ,E H_H,

L H

I , : K £ » ) » 4  E  EAE„-K'~ 1) ]H 2
(2 7 )

I . :S(E2H)<*
_ H<

Since only the magnitude of E’s are known ^  j and 4 can be used initially. But as 

soon as few more sign are known ^  3 beings to contribute and as more signs are 

available, ^  2 plays an important role. For a centrosymmetric space group the 

2 formula takes the form

,E h ,E
H  r

H - H 0 (28)

If all E’s were large, (31) may be used in the from given by Zachariasen 

* (£ * )«  4  'E A E h> (E h^ )  ] (29)
H r

Cochran and Douglas 19, and Grant, Howells and Rogers 20 have used the triple product 
sign relationship in different forms to solve the phase problem.

If follows that we have to use probability theory in order to assess the reliability 
of (25) and (26).

The probability of s(Eh) associated with equation (28) to be positive as given by 
Woolfson 21 and Cochran & Woolfson 22 for a structure with N equal atoms is defined as

=  (3 0 )

2 0 8



This formulae can be extended to the case o f non-equal atoms by substituting

1/ 4 n  with <t 2<t 3 3/2 where a  n= ]T z"  where Z } being the atomic number o f the jth

atom. When several terms contribute to, the summation with the same sign, then the 

argument of the tanh becomes large and P+ tends to the extreme values 1.0 or 0.0 values 

of P+ less than ¥2 are thus indications that the sign of Fhki is negative with a probability P_ 

given by

P _ = l - P +

For a non-centrosymmetric structure the phase (^)can take any value between 0 to 2 and 

the probability density 23 of <J>3 is

W  = — ^7 -exp(c0sO 3) (31)
2nl{x)

Where I (x) is a modified Bessal function of order zero. This is the well known Cochran 

distribution. P ( 0 3) is a von Mises24 function and its trend is smaller to that of Gaussian 

function. The parameter is derived from the normalized structure factor as

\E HE H,,E (32)

Cochran distribution (31) shows that, for higher values of / t h e  distribution peaks more 

sharp, which increase the reliability of the phase estimation.

For a non-centrosymmetric crystal structures additional formulae (25b) may be 

used to derive approximate values for the phase angle. The so called tangent formulae by 

Karle and Hauptman 25 is

t a n ^  ------j— — —----~ (33)

H
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and is used extensively to calculate and also to refine phases for non-centrosymmetric 
structures. The current phase determining procedures are based on the following 
weighted tangent formulae,

HWH \EA\E (34)
h K \ K M E h . h ] c o ^ h . + ^ _ h . )

Where wH = tan-1 [ h r 1/2 \Eh |(A2 + B2H] (35)

Initially the weight wH of phase are taken unity. The variance associated with the

determination of <j>H can be derived from probability formulae of Cochran.

rr 7tV = --- +3 » (36)

where
1 2 j 2'

CC =" ^T2W2 \EhEh,Eh_h< | cos (^/- + ) + S2N >

and I„(oc) is the nth order modified Bessel function of imaginary argument.

1.4.8 STRUCTURE INVARIANTS AND SEMIINVARIANTS
Structure Invariants: The phases <f>H depend upon both the atomic positions as

well as the choice of origin where as the amplitudes \Eh | ’ are independent of the origin 

and the function of only the structure. If we shift the origin by a vector A, all the atomic 
vectors change to r} -  A and FH become Fh, given by

F H '  = Z f j  = exP ~  ̂ )] = F h  exp(-2^/FA) (37)

= \Fh | exp -  2nHK)\
We see that phase changes by an amount ~2nHE while the amplitude is invariant 

as directed by the physical reason. There exist certain linear combinations of phases
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(triplets and quarters) whose values are independent of the choice of origin and are 

known as structure invariants 26 i.e.

=+B l (38)

A triplet structure invariant is uniquely associated with the three reciprocal lattice vectors 

if

Hx+H2+H3=0 (39)

The first neighborhood 27of the triplet (38) satisfying the condition (39) consists of three

magnitudes \EHi \,\e H2 , EH} when all the three magnitudes are large then

<I>3 »  0 (Cochran distribution) (40)

The eee group does not change its sign with change of origin and these structure 

factors are, therefore called structure semi invariants. If three groups are taken, such as 

oee, eoe and ooe where adding the parity o f the indices gives eee, then the product of 

three such structure factors is also a structure invariant.

<ja

Similarly, a quartet phase relationships <J>4 is defined as

(41)

When Hx +H2 +H3+H4 = 0 (42)

First neighborhood of the quartet (41) consists of four magnitudes

" H i
\E'H, EJ' (43)

In favourable condition <D4 »  0 (44)

The second neighborhood of the quartet (44) consists of the four magnitudes in (43) and 

three additional cross terms

7 ' F 'E;’H3+H4 (45)
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If all the seven magnitudes are large then the condition (44) is favoured 29. when the 

cross terms (45) are small and the four magnitudes are large the estimation30,31 is

<D4 »*r (46)

The Quartets (46) are known as negative or zero quartets. The estimation of the 

negative quartets, which includes the contributions from observed weak reflections (cross 

terms), are entirely different from those of active triplets, but the weights associated with 

the quartets are small in comparison to that o f active triplets. Therefore, the negative 

quartets are not used for finding the initial phases, but play a significant role in the 

figures o f merits (FOM).
'i

Structure semi invariants: The linear combinations of phases which are independent of 

the choice of the permissible origins are called structure semi invariants. Form equation 

(37) we get

0h '= (47)

For all permissible origins <j>H' -  <f>H i.e. HA is an integer. The structure invariants , 

defined by equation (47) is known as one phase semi invariant.

The linear combinations of two phases + <j>Ĥ is a structure semi invariants if 

{Hl + ff2) A is an integer and so on for higher structure semi invariants. Analogous to the 

structure invariants, the structure semi invariants can be estimated using the nested 

neighborhood principle32

1.5 REFINEMENT OF STRUCTURE

Once a trial model of the structure has been proposed, it is necessary to refine it. 

A common measure of the extent to which refinement of the atomic positions has

212



progressed is to compute the reliability factor (R) which measures the agreement between 

observed and calculated structure factors. The R-factor can be defined as

R =
Iltel-te
hu________

Itel
(48)

Nd

Where l^o | ’s and|Fc| ’s the observed and calculated structure factors respectively.

The value of R depends on the accuracy of structure determination.

The differential Fourier synthesis can be used for refinement of a structure, but 

the main disadvantage o f this method is that it is not possible to refine the scale and 

thermal parameters o f the structure.

An analytical method of refinement of great power and generality is based on the 

principle of least- squares and has been described by Whittaker and Robinson . In this 

method the refinement of crystal structures are based on the minimization of the squares 

of the properly weighted differences between the calculated and observed structure 

factors with respect to some parameters of the structure. The most commonly used 

function is,

hkl

Where wm

- t e l) ’ (49)

is the weight of the observation and usually expressed as

W„hkl a 2(hkl)
(50)

Where cr (M l) is the standard deviation [F0(M/)|

Cruickshank 34 and Rollet 35,36 have discussed methods for solving the equations 

involved in the least- squares refinement. The parameters generally involved in the 

refinement process are:
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1) One or more scale factor

2) The three positional parameters and six anisotropic thermal parameters for 

each heavy atom and three positional parameters and one isotropic thermal 

parameter for each hydrogen atom.

1.5.1 ESTIMATED STANDARD DEVIATIONS FROM LEAST -SQUARES 

The estimated standard deviations (e.s.d.) for any parameter p, is

i
"̂ 2

cr( ^ ) = f ( fej f Z wA2] /(w ~ w)
\  \ hk l J

(51)

Where b is the ith diagonal element of the inversion matrix, w is the weight, m is the 

number of observations and n is the number of parameters. Refinement of the parameters 

may be considered to be complete when the shifts in the parameters are smaller than their 

e.s.d. ’s.

1.6 EXPERIMENTAL PROCEDURE

1.6.1 SELECTION OF SUITABLE CRYSTALS

The selection of a single crystal of a proper size and shape is very important, 

since the success o f entire process of crystal and molecular structure determination 

depends on the selection of an appropriate crystal. Using a polarizing microscope a 

crystal of proper size and shape may be selected. The crystal is mounted at the end of a 

thin glass fiber by some adhesive and mounted on a goniometer head. The goniometer 

head consists o f two adjustable graduated arcs at right angles to each other and two other 

perpendicular adjustable screws used for horizontal and vertical shift of the crystal.

The size of the selected crystal should be such that it can produce a noticeable 

diffraction pattern with the minimum absorption of x-rays.
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1.6.2 PRELIMINARY INVESTIGATIONS BY X-RAY PHOTOGRAPHIC 

TECHNIQUE

Preliminary studies, includes to find the unit cell dimension and space group of 

the crystal are usually done by photographic methods.The photographic methods involve 

the rotation, oscillation, Wessenberg methods.

The rotation photographs can give information about the dimension of the unit 

cell of a crystal provided it is allowed to rotate in the requisite direction, but it is not 

possible to get any symmetry information.

Some o f the limitations o f the rotation photographs can be overcome in the 

oscillation photographs. In the oscillation method the crystal is oscillated over a limited 

range resulting in fewer diffraction spots, which can be indexed two -dimensionally.

The problems of indexing and overlapping of diffraction spots have been 

removed in the Weissenberg method where a single layer of reciprocal lattice points are 

recorded separately. In this method only one layer line o f reflections is allowed to be 

recorded by allowing in through an adjustable metal screen as a layer line screen and 

photographic film co-axial with the oscillation axis is given a translational motion 

parallel to the oscillation axis, synchronized with the oscillatory motion of the crystal. 

The distance traveled by the film is linearly related to the angle of rotation. This results in 

spreading of the reflected spots over the surface of the film on characteristic straight lines 

and curves. The Weissenberg photograph produces an image of the reciprocal lattice.

1.6.3 DETERMINATION OF SPACE GROUPS

Careful examination o f oscillation and Weissenber photograph can lead to the 

identification of the Laue group and to the crystal class. Presence of symmetry elements,
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except the center o f symmetry, can also be detected from the photographs. The 

observation o f systematic absences in the Weissenberg photographs indicate the presence 

of symmetry operations involving translation, e.g. screw axes, glide planes and non­

primitive lattices. The information thus obtained can be used to identify the space group 

of the crystal. There are a number of space groups which exhibit the same systematic 

absences and cannot be determined unambiguously. For heavy atom derivatives this 

ambiguity of space groups can be resolved from the occurrence of Harker line and 

Harker section vectors in the Patterson map.

Sometimes information about the presence or absence of center of symmetry can 

also be obtained from physical properties viz.piezo electricity, pyro electricity and the 

optical activity. The statistical distribution of E-values can also be used to detect the 

presence of the center of symmetry.

1.6.4. COLLECTION OF INTENSITY DATA

Photographically, intensity data is usually collected using the equi-inclination 

‘multiple films’ Weissenberg method. In this method to cover the entire range of 

intensities it is often necessary to collect two sets of data for each year, one with long 

exposure and the other with a short exposure. The intensities are estimated either visually 

by using a calibrated scale or by the photographic method.

The intensity data is collected in a Bruker-Nonius SMART CCD-3circle 

diffractometer. It employs the kappa geometry instead of standard Eulerian geometry 

used in most of the 3-circle diffractometers. The W129 scan technique has been used for 

data collection. The profile of the reflecton is recorded by scanning it in 96 steps. The 

first and last 16 steps record the left backgrounds (LBG) and right background (RGB).

216



The net count is given by, ((INT)-2(LB G+RB G)) and the standard deviation of the 

counts is given by (INT+4(LBG+RBG)), where ENT is the total count produced by 

intensity profile. During the data collection periodic checks are carried out with certain 

“orientation” and ‘intensity’ control reflections to ensure the stability of the crystal, the 

stability of the X-ray beam, and the orientation o f the crystal.

The intensity data are collected by scanning the asymmetric part of the reciprocal 

lattice in a zig-zag manner, so that the mechanical movements of the diffractometer can 

be minimized. In the Bruker 3-circle diffractometer a graphite crystal with a mosaic 

spread o f about 0.4° is positioned to produce 002 reflections and is used as 

monochromator.

1.7 FACTORS AFFECTING X-RAY INTENSITY

In X-ray diffraction the amount of energy £ M1 diffracted by the crystal which is 

rotating uniformly about an axis normal to the x-ray beam can be written as

Em  -  KLhktPm \Fhkl\ (52)

where K is a scale factor and it is constant for the experiment but Lm and Pm are the

Lorentz and polarization factors and varying from reflection to reflection.

The Lorentz factor, which is a measure of the time for which a reciprocal lattice point is 

in the reflecting position, is dependent on the distance of the point from the origin. The 

Lorentz factor (L) is given by

SinB
L= - (53)

Sind (Sin2 6 -  Sin2 fj)2

Where 9  is the Bragg angle and /i is the equi-inclination setting angle.

The expression (L) for diffractometer using the equitorial geometry is given by,
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L = USin2e (54)

The origin of the polarization factor lies in the attenuation of the reflected beam which

occurs due to the polarization at the reflecting surfaces and given by,

l + cos22ff - (55)

The polarization factor for the diffractometer using the crystal monochromator is given

by,

Where P= 0, for an ideally imperfect crystal monochromator 

= 1, for an ideally perfect monochromator

6m is the Bragg-angle for the 002 reflection of graphite and 6C is the Bragg angle 

for the reflection being measured37.P is arbitrarily chosen as 0.5 in all cases

1.7.1 ABSORPTION AND EXTINCTION EFFECTS

The absorption o f X-rays in passing through a crystal is one of the major sources 

of errors in highly refined structures. This effect can be minimized by selecting a suitable 

radiation and a crystal of suitable size. Various methods have been suggested for 

correcting the effects of absorption38'40

There are two types of extinctions, primary and secondary. Primary extinction 

results from the destructive interference between the primary and secondary beams. 

Primary extinction is pronounced in perfect crystals and can be minimized by dipping the 

crystal in liquid air. In any case, most crystals are imperfect to some extent, and one can 

imagine an ideally imperfect crystal in which the perfect regions are so small that 

primary ‘extinction’ is inappreciable.

cos 26m +cos2 26.m c

1+cos 26>tn
) (56)
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Secondary extinction leads to the reduction o f intensity o f the primary X-ray 
beam, even in an ideally imperfect crystal. This results from the diversion o f the energy 
from the primary beam by reflection from the planes preceding it and any absorption in 
the path o f it. It is very difficult to eliminate this effect by any treatment o f the crystal. 
Sometimes the extinction parameter may be incorporated as an additional parameter in 
the least squares refinement o f the crystal structure.

1 . 7 . 2  S C A L I N G  O F  D A T A

Once o f the various corrections have been applied to the observed intensities of 
reflections, it is necessary to convert them to the ‘absolute scale’ and a scale factor is 
required for the conversion.

According to Wilson41 the expectation value o f the intensity for the hkl reflection 
is given by,

</(MZ)) = £ G ,  (57)

Where G j is the scattering factor o f the j111 atom taking into account the attenuation due to 
thermal vibration. If a common isotropic temperature factor. B is attribute to all atoms, 
then

< / ( / , « ) >  = e x p ( - 2 £ ™ l £ ) ] r / ;  ( 5 8 )

If K is the scale factor which relates the observed intensities to the absolute intensities, 
then

Therefore,
I / /  J

21? sin2 0 
X2 +lnK

(59)

(60)
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So a plot of In i./; vs. sin2 &

Would give a straight line from which both K and B can be found out. This plot is known 

as Wilson plot.

The corrected intensities are converted to the absolute scale by dividing them 

with the scale factor ‘K’ obtained from the Wilson plot

1.8 CALCULATION OF INTERATOMIC DISTANCES AND ANGLES

A molecule can be represented either by a set of external or internal parameters. 

The parameters o f a molecule are the coordinates of the various atoms as determined in 

the structure analysis and are usually given w.r.t. the crystallographic axis, in terms of 

fractional coordinates. The internal parameters of a molecule are parameters that 

characterize the molecular conformation and hence are known as conformational 

parameters. There are three conformational parameters in a structure, which are bond 

length, bond angles and torsion angles etc.

1.8.1 BOND LENGTHS

The distance between two covalently bonded atoms is known as bond length and 

is represented by the symbol L. The expression for the bond length between two bonded 

atoms A&B is given by

L{AB) = {{XB- X Af + ( Y B- YAf H Z B- Z Af f  (61)

Where X A,YA>ZA,& X B,YB,Z Baie the coordinates of the atoms A&B. This

conformational parameter gives, an idea about the nature and strength o f any covalent 

bond.
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In general, any two atoms in  a  structure are neither completely correlated, so the 

error in positional parameters and unit ce ll parameters also contributes to the error in 

bond length and hence g ive rise to the standard deviation in  bond length which is 

expressed by an equation,

L „ d L .  , (62)

W here L  is the bond length, Pt,PJ are positional parameters, at,a} are unit cell

parameters, Vj is  related to the element by o f the inverse matrix element o f the

refinement by the equation,

r=sl

wrAFr2
m-n A (63)

S im ilarly , U is related to the number o f parameters o f  the m atrix that define the lattice

u„
J  wrA92
r=1 m-n fb\j (64)

W here wr and wr axe weights o f the rth Foand0o, AFr is, |Fo|-|Fc j,A 0 r is  0O-0C 
, m & m' are the number o f measured F0 ’ s and 60 ’ s.

I.S.2. BOND ANGLES
The angles between the two bonds meeting at a  common atom are called as bond 

angles. This is  represented by the symbol 0 .  The angle 0  subtended by bonds AB &AC 

from the law  o f direction cosines, be represented as

^cosl((̂ £ ± ( ^ ) W )
2 (AB)(AC) (65)
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n

A c

Figure 1.1: Bond angle

I f the axes o f  the unit cell are orthogonal, the angles may be calculated from the direction 

cosines o f  the line segments AB & AC

Where lj, m^ n^ & l2j m2j n2 are the direction cosines o f  AB & AC respectively. 

The standard deviation in a bond angle is given by the expression,

cr(0 ) = (crB2 /(AB)2 + a A 2(BC)2 / (A B f(A C f + a c2 /(.AC)2) 2 (67)

Where A, B, C are the standard deviation in the positions o f  the atom A, B, C.

1.83 TORSION ANGLES

The torsion angle about the bond B-C in a series o f  bonded atoms A-B-C-D is defined as 

the angle o f  rotation needed

0 = cos 1 (lj2 + mlm2 + ) (66)

A D

Figure.1.2: Torsion angle
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to make projection of the B-A bond coincide with projection of C-D bond. The range of 

X is from -180° to +180°. For a given molecule, different conformation are obtained 

through rotations about single bond and the parameters i.e. different from one 

confirmation to another is the torsion angle. Thus the torsion angles is the most important 

and informative parameters in the field of molecular conformation.

1.9(a) COMPUTER PROGRAM USED

Computer program based on the principle of direct methods are used for the 

solution of the crystal structure. For the generation of phase, different workers suggest 

number of ways for the same. But the software developed for the generation o f phase in 

SHELX computer programmed has advantages compared to other methods.

1.9(a).l SHELX-76

SHELX-76 is a very versatile software package for the automatic solution of crystal 

structure 42. It is written in an extremely simple subset of ASA FORTAN which does not 

trouble any Fortran compiler, provide that integers are at least 24 bits long. This program 

runs comfortably in 24K fast core on various computers. Overlay is not essential if 

virtual memory is available.

This package consists o f fifteen subroutines namely, INIT, XDRED, FREAD, 

SMERG, ATFEX, XREF, SELS, ABOND, XCEN, XTPR, CONY, PHEX, QUAT, 

XMAP, XPLAN, XPRR all these subordinates are linked together in such a way that the 

structure can be had in a single computer job.

The following main operations are required to be performed for carrying out 

the structure solution.
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1.9(b) SHLEX 97

SHLEX-97 is the most upgraded version o f the computer program package for the

determination of crystal structure. The program is due to Prof.G.M.Sheldriek43of the

University o f Gottingen, Germiny.This program package is released in the year

1997.There are six executable programs. They are SHELXS, SHELXL, CIFTAB,

SHELXA, SHELXPRO and SHELXWAT.

The refinement program SHELXL includes many new features to make it easier to

use for macromolecules, even at moderate resolution. It has been used in the present

work for the refinement of all the structures. This program carries out full matrix least

squares refinement of the positional parameters temperature factors.

It also calculates the torsion angles least squares planes dihedral angles hydrogen 

bond geometry etc.

1) NORMALIZATION

Normalization of structure factors are calculated by K-curve.

2) INVARIANTS AND SEMIINVARIANTS

Triplet relations generated are followed by negative quartet estimation Quartets are 

employed as figures of merit (FOM) only. Sigma-1 type formulae are used to estimate 

the one-phase semi-invariants.

3) STARTING SET

The most tightly linked 200 reflections are selected and a starting set of phase is derived 

from this by means of pseudo tangent refinement. This is a phase less tangent formulae 

expansion system somewhat comparable to divergence mapping As an alternative, 

conventional convergence mapping is used.
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4) PHASE EXTENSION AND REFINEMENT 

Phase permutation is employed by using “Magic Integers” which feed a Hull- 

h-win44 weighted tangent refinement procedure figures of merit are the out put. Generally 

the COM-FOM, if the start o f structural calculation is correct, will give the maximum 

frequency of occurrence.

SHELX-76 program is provided with five test jobs whose CPU time ranges from 

(13-90) seconds.

1.10 (a).2 SHELXS-86

The direct method strategies in SHELX -86 45,46 are based on random start, multi­

permutation, single solution procedure. For computational efficiency, a reflection subset 

(NS) is used for estimation ofor’s and initial refinements. Out o f the possible phase 

permutation the best 10 %( by default) subset phase permutations are selected with the 

use of FILTER (F) derived on the basis of early FOM s as

F  = Ra +max(0,(0.25+NQUEST)2) (68)

Where the negative quarters are used to calculate NQUEST-FOM. These phase 

permutation are refined for NTAN tangent refinement cycles with subset reflections. One 

phase structure estimates are evaluated which are used in the FOM calculations and can 

also be incorporated in starting set with the command PHAS. The phase refinements of 

NP phase permutations are performed by a modified tangent formula.

new (j)H — Phase of (]T «  ~v) (69)

In which the triplets and quartets are respectively

a  = N ^ 2 \ E H\EH,EH„H, (70)
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a n d ^ A ^ ^ Epr E„ EHn j  n j  /I4 (71)

Where ‘g’ is a positive constant and ‘N ’ is the number of atoms per unit cell.

The figures of Merits used are

I) R47which shows the consistency of active triplets is defined as

2 > < o 2
(72)

Where the weight w = -----------
(a ^ + 5 )

II) The FOMNQUAL48 (instead of NQUEST49) defined as

V  Re(a -  rf)
M A T T A T r = ^ H  i ____ LLNQUAL= (73)

Is used to check the internal consistency o f negative quartets as well as triplets.

From the above two figure of Merits, R and NQUAL, the CFOM is calculated as,

otherwise

Where Q is a structure dependent constant.

For a correct phase set, NQUAL approaches to -1 , M (ABS) close to 1.0 and CFOM is 

below 0.08. Also for the best solution, both FILTER and RESID have their minimum 

values. The structure corresponding to the phase set with the best of FOMs is improved 

by an E-Fourier partial structure extension procedure 50 applied on point atoms and 

peaks. In this cyclic process,

CFOM =
Ra +(NQUAL? if  Q>NQUAL (74)

( 75)
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is minimized . Here the phase o f£ 0 ’s calculated from all the atoms and peaks; where the 

atoms contribute to the phase E0 ’s only.

1.10 (b) 2 STATISTICAL TEST

Some statistical tests are carried out in order to examine the accuracy of the result.

(1) GOODNESS OF FIT (S)

Goodness o f fit (S) is calculated by the SHELX-97 programmed with the help of the 

formulae,

Where, m = number of observed reflection 

n = number o f parameters

(2) SHELXS 86 programme calculates the values of Rml and Ra by averaging 

equivalent reflection using

2) ORTEP

This program by C.KJohnson (1976) has been used for drawing the molecular 

structures showing the thermal ellipsoids, the stereoscopic view of the molecule and 

molecular packing.

(76)

Rmt = £ | F 2- ( F ^ m e a n l / ^ F 2 

K ^ o - i F 2) / ^ 2

(77)

(78)

227



REFERENCES: 1

1. Ladd,M.F.C.and Palmer. R.A: In structure Determination by x-ray crystallography, 

(ch- 3), plenum(1977)

2. Egert, E and sheldrick,G.M;Acta cryst,A41,262(1985)

3. Patterson A.L.; Phys.Rev.46, 372(1934)

4. Phillips, J.C and Hodgson, K.O.;Acta Cryst.A36,432(1980)

5. Karle, J and Hauptmn,H.; Acta cryst.9,635(1956)

6. Hauptman, H and karle, J.;Solution of the phase problem l.The centrosymmetric 

crystal. A.C.A. monograph No.3 Polycrystal Book service,pittsburg(l953)

7. Rogers, D.; Computing methods in crystallography,J.S.;Pergamon,Oxford,pp 117- 

133(1965)

8. Giacovazzo, C.; Direct methods in crystallography (ch-1), Academic Press, London 

(1980)

9. Hoells,E.R,Phillips,D.C.and Rogers, D.;Acta cryst,3,210(1950)

10. Lipson, H.and Woolfson,M.M.^4cto cryst3 ,2 10(1952)

11. Rogers,D.and Wilson,A. J.C.yfcta cryst.6,'439(1953)

12. Harker, D.and Kasper,J.S.^cta cryst.1,70 (1948)

13. Sayer, D .;Acta cryst.5, 60 (1952)

14. Karle, J.and Hauptman^fcto cryst3,\%\ (1950)

15. Karle, I.L.and Karle,l.-ylcta cryst. 17,835(1964)

16. Karle, J and Karle,I.L.^cto cryst.21,849(1966)

17. Cochran, W ,;Acta cryst.5,65 (1952)

18. Zachariasen, W.H.^fcto cryst.5, 68 (1952)

19. Cochran, W.and Douglas, A.S.; Proc.Roy.Soc.A227,486(1956)

20. Grant, D.F., HAOWELLS, R.G.and Rogers, D.; Acta cryst.10,489,(1957)

228



21. Woolfson, M.M.; Acta Cryst.l, 61(1954)

22. Cochran, W.and Woolfson, M.M.; Acta. Cryst.8 ,1 (1955)

23. Cochran, W.; Acta Cryst.8, 473(1955)

24. Von Mises, R.; Phys.Z.19,490(1918)

25. Karle, J and Hauptman, Acta Cryst.9, 635(1956)

26. Hauptman, H.and Karle, J.; Acta Cryst.9,45(1956)

27. Hauptman, H.; Acta Cryst.A31, 680(1975)

28. Schenk, H.; Acta Cryst.A29, 77(1973)

29. Hauptman, H.; Acta Cryst. A3 0, 822(1974)

30. Hauptman, H.; Acta Cryst.A3Q A l l  (1947)

31. Schenk, H.; Acta Cryst.A30,477(1974)

32. Hauptman, H.; Acta Cryst.A32, 934(1976)

33. Whittaker, E.T.and Robinson, G.; The calculus of observation, Blackie and 

Sons, London, Ch-9(1949)

34. CruiekshankD.W.J.; Crystallographic, Computing, Ed.Ahmed, F.R.; Munksgaard, 

Copenhagen, pp 187-196(1970)

35. Rollet, J.S.; Computing methods in crystallography,pergamon press,Oxford,pp.47- 

56(1965)

36. Rollet, J.S.; Crystallographic Computing, Ed.Ahmed, F.R.Munksguard, Copenhagen, 

pp.168-181(1970)

37. Azaroft, L.V.; Acta Cryst.8, 701 (1955)

38. Busing.W.R.and Levy,H.A.;Acta cryst.10,180 (1957)

39. Wells.M.; Acta cryst.13, 722(1960)

40. Coppens, p., De Meulenaer,J.and Tompa.H.;Acta cryst.22,601(1967)

41. Wilson A  J- C. ;Nature,London, 150.151(1942)

229



42. Sheldrick,G.M.;Crystal structure calculation program.University of 

Cambridge,Cambridge(1976)

43. Sheldrick, G.M.SHELX-97. (1997).Program for the solution and refinement of 

crystal

stractures.University of Gottingen,Germany.

44. Hull,S.E.and Irwin,M.J.; Acta cryst.A34,863-870(1978)

45. Sheldrick,G.M.;Actacryst,A46,467 (1990)

46. Sheldrick,G.M.;In User Manual o f SHELXS86,A Computer program for determining 

the crystal structures,Gottingen,Germany(1986)

47. Germain,G.;Main,P.and Woolfson,M.M.;Actacryst.A27,368(1971)

48. Sheldrick,G.M.;In Crystallographic Computing 3:Data collection.Structure 

Determination.Proteins and Databases, pp,184.Claredon Press.Oxford(1985)

49 .De Titta,G,T.;Edmonds,J.W.;Langs,D.A.and Hauptman,H,; Acta cryst,A31,472(1975) 

50. Sheldrick, G.M.; IComputionl crystallography,ed.D.Sayre.;Claredon 

Press, Oxford, pp, 506, (1982)
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