LIST OF FIGURES

PART-I

CHAPTER-1

Figure 1.1: Plant of Nephafu (Clerodendron colebrookinum)	5
Figure 1.2: Plant of Mahaneem (Azadirachta indica)	5
Figure 1.3: Plant of Tulsi (Ocimum sanctum)	10
Figure 1.4: Plant of Nayantora (Vinca rosea)	10
Figure 1.5: Fruits of Bandordima (Chichocheton peniculatus)	14
Figure 1.6: Plant of Sarumoin (Cudrania javanensis)	14
CHAPTER-2	
Figure 2.1 Basic of quantitative x-ray spectrometry	31

CHAPTER-3

Figure 3.1: Schematic diagram of working principle of the XRD with	
counter assembly	50
Figure 3.2: Schematic Diagram of Differential Thermal Analyser System	54
Figure 3.3: Schematic diagram of Thermogravimetric Analyzer	55
Figure 3.4: Schematic diagram of Differential Scanning Calorimeter Systems.	60

CHAPTER-4

Figure 4.1(a) X-ay diffractogram of unheated sample-A	67
Figure 4.1(b): X-ray diffractogram of annealed sample-A	67
Figure 4.1(c): X-ray diffractogram of quenched sample-A	68
Figure 4.2(a): X-ray diffractogram of unheated sample-B	68
Figure 4.2(b) X-ray differactogram of annealed sample-B	69
Figure 4.2(c) X-ray diffractogram of quenched sample-B	69
Figure 4.3(a) X-ray diffractogram of unheated sample-C	70
Figure 4.3(b) X-ray diffractogram of annealed sample-C	70
Figure 4.3(c) X-ray diffractogram of quenched sample-C	71
Figure 4.4(a): X-ray diffractogram of unheated sample-D	71
Figure 4.4(b) X-ray diffractogram of annealed sample-D	72

.

-

•

.

Figure 4.4(c) X-ray diffractogram of quenched sample-D	72
Figure 4.5(a): X-ray diffractogram of unheated sample-E	73
Figure 4.5(b): X-ray diffractogram of annealed sample-E	73
Figure 4.5(c): X-ray diffractogram of quenched sample-E	74
Figure 4.6(a): X-ray diffractogram of unheated sample-F	74
Figure 4.6(b): X-ray diffractogram of annealed sample-F	75
Figure 4.6(c): X-ray diffractogram of quenched sample-F	75
Figure 4.7(a): The X-ray fluorescence (XRF) spectrograms of unheated sample A	79
Figure 4.7(b): The X-ray fluorescence (XRF) spectrograms of annealed sample A	79
Figure 4.7 (c): The X-ray fluorescence (XRF) spectrograms of quenched sample A	80
Figure 4.8(a): The X-ray fluorescence (XRF) spectrograms of unheated sample B	80
Figure 4.8(b): The X-ray fluorescence (XRF) spectrograms of annealed sample B	8 1
Figure 4.8(c): The X-ray fluorescence (XRF)spectrograms of quenched Sample B	81
Figure 4.9(a): The X-ray fluorescence (XRF) spectrograms of unheated sample C	8 2
Figure 4.9(b): The X-ray fluorescence (XRF) spectrograms of annealed Sample C	82
Figure 4.9(c): The X-ray fluorescence (XRF) spectrograms of quenched sample C	83
Figure 4.10(a): The X-ray fluorescence (XRF) spectrograms of unheated sample D	83
Figure 4.10(b): The X-ray fluorescence (XRF) spectrograms of annealed sample-D	84
Figure 4.10(c): The X-ray fluorescence (XRF) spectrograms of quenched sample-D	84
Figure 4.11(a): The X-ray fluorescence (XRF) spectrograms of unheated sample-E	85
Figure 4.11(b): The X-ray fluorescence (XRF) spectrograms of annealed sample-E	8 5
Figure 4.11(c): The X-ray fluorescence (XRF) spectrograms of quenched sample-E	86
Figure 4.12(a): The X-ray fluorescence (XRF) spectrograms of unheated sample-F	86
Figure 4.12(b): The X-ray fluorescence (XRF) spectrograms of annealed sample F	87
Figure 4.12(c): The X-ray fluorescence (XRF) spectrograms of qunched sample F	87
Figure 4.13(a): TG and DTG Thermograms of Sample -A in air atmosphere	90
Figure 4.13(b): TG and DTG Thermograms of Sample-A in oxygen atmosphere	90
Figure 4.13(c): TG and DTG Thermograms of Sample -A in nitrogen atmosphere	91
Figure 4.14(a): DTA Thermograms of Sample-A in air atmosphere	91
Figure 4.14(b): DTA Thermograms of Sample-A in oxygen atmosphere	92
Figure 4.14(c): DTA Thermograms of Sample -A in nitrogen atmosphere	92
Figure 4.15(a): TG and DTG Thermograms of Sample-B in air atmosphere	93
Figure 4.15(b): TG and DTG Thermograms of Sample -B in oxygen atmosphere	93

Figure 4.15(c): TG and DTG Thermograms of Sample-B in nitrogen atmosphere	94
Figure 4.16(a): DTAThermograms of Sample -B in air atmosphere	94
Figure 4.16(b): DTAThermograms of Sample -B in oxygen atmosphere	95
Figure 4.16(c): DTAThermograms of Sample-B in nitrogen atmosphere	95
Figure 4.17(a): TG and DTG Thermograms of Sample-C in air atmosphere	96
Figure 4.17(b): TG and DTG Thermograms of Sample-C in oxygen atmosphere	96
Figure 4.17(c): TG and DTG Thermograms of Sample-C in nitrogen atmosphere	97
Figure 4.18(a): DTA Thermograms of Sample-C in air atmosphere	97
Figure 4.18(b): DTA Thermograms of Sample-C in oxygen atmosphere	98
Figure 4.18(c): DTA Thermograms of Sample-C in nitrogen atmosphere	98
Figure 4.19(a): TG and DTG Thermograms of the sample–D in air atmosphere	99
Figure 4.19(b): TG and DTG Thermograms of the sample -D in oxygen atmosphere	99
Figure 4.19(c): TG and DTG Thermograms of the sample-D in nitrogen atsmosphere	100
Figure 4.20(a): DTA Thermograms of the sample -D in air atmosphere	100
Figure 4.20(b): DTA Thermograms of sample -D in oxygen atmosphere	101
Figure 4.20(c): DTA Thermograms of sample-D in nitrogen atmosphere	101
Figure 4.21(a): TG and DTG Thermograms of sample- E in air atsmosphere	102
Figure 4.21(b):TG and DTG Thermograms of sample –E in oxygen atsmosphere	102
Figure 4.21(c): TG and DTG Thermograms of sample-E in nitrogen atsmosphere	103
Figure 4.22(a):DTA Thermograms of sample- E in air atmosphere	103
Figure 4.22(b): DTA Thermograms of sample- E in oxygen atmosphere	104
Figure 4.22(c):DTA Thermograms of sample-E in nitrogen atmosphere.	104
Figure 4.23(a): TG and DTG Thermograms of sample -F in air atsmospher	105
Figure 4.23(b):TG and DTG Thermograms of sample –F in oxygen atsmosphere	105
Figure 4.23(c): TG and DTG Thermograms of sample- F in nitrogen atsmosphere	106
Figure 4.24(a): DTA Thermograms of sample -F in air atmosphere	106
Figure 4.24(b): DTA Thermograms of sample -F in oxygen atmosphere	107
Figure 4.24(c):DTA Thermograms of sample- F in nitrogen atmosphere	107
Figure 4.25: DSC Thermograms of medicinal plant leaves sample A	116
Figure 4.26: DSC Thermograms of medicinal plant leaves sample B	116
Figure 4.27: DSC Thermograms of medicinal plant leaves sample C	117
Figure 4.28: DSC Thermograms of medicinal plant leaves sample D	117
Figure 4.29: DSC Thermograms of medicinal plant fruits sample E	118

ι

Figure 4.30: DSC	Thermograms of med	icinal plant fruits s	ample F	118

PART-II

CHAPTER-1

Figure 1.1: Column chromatography	133
Figure 1.2: Column Chromatography seperation system	133
Figure: 1.3 Thin Layer Chromatography	133
Figure 1.4: Spinning nucleus under applied magnetic field	137
Figure 1.5: Spinning nucleus at higher energy state	137

CHAPTER-2

Figure 2.1: Structure of 6α-acetoxy azadirone (I) isomers	147
Figure 2.2: Soxhlet apparatus	148
Figure 2.3: Column chromatography	148
Figure 2.4: Thin Layer Chromatography Plate, applying sample	149
Figure 2.5: TLC plate at solvent chamber	149
Figure2.6: TLC Spreader/Applicator	150
Figure 2.7: Preparation of TLC Plates	150
Figure 2.8: IR Spectra of MK-001	151
Figure 2.9: ¹ H NMR Spectra of MK-001	152
Figure 2.10: Mass spectra of MK 001	153

CHAPTER-3

-

158
164
164
165
1 66
167

Figure 3.7: ¹ H NMR Spectrogram of the compound MN-02	16 8
Figure 3.8: Mass Spectrogram of the sample MN-01	169
Figure 3.9: Mass Spectrogram of the sample MN-02	170

CHAPTER-4

Figure 4.1: HPLC system	176
Figure 4.2: The correlation of HPLC peak area to known sample	
concentration (19K)	177
Figure 4.3: The calibration curve from data	178
Figure 4.4: Isolated compound MN-01	182
Figure 4.5: Isolated compound MN-02	183
Figure 4.6: Extract: Cudrania javansis, fraction-water	184
Figure 4.7: Extract: Cudrania javansis, fraction-petroleum	185
Figure 4.8: Extract: Cudrania javansis, fraction-chloroform	186
Figure 4.9: Extract: Cudrania javansis, fraction-methanol	187
Figure 4.10: Isolated compound MK-001	1 8 8
Figure 4.11: Extract: Chisocheton peniculatus fruits, fraction-petrolium	189
Figure 4.12: Extract: Cichocheton peniculatus fruits, fraction-methanol	190

PART-111

CHAPTER-1

`

Figure 1.1: Bond angle	222
Figure.1.2: Torsion angle	222
CHAPTER-2	
Figure 2.1: Structure of 6α-acetoxy azadirone (MK-001)	235
Figure 2.2. An ORTEP view of (MK-001) in 30% probability with atomic	
numbering scheme.	237
Figure 2.3: Packing structure with C-H…O Interactions	245
Figure 2.4: The packing of the molecules in the crystalline space as viewed	
down the a-axis of the unit cell	246

,

Figure 2.5: The packing of the molecules in the space as viewed down the	
b-axis of the unit cell.crystalline	247
Figure 2.6: The packing of the molecules in the crystalline space	
as viewed down the c-axis of the unit cell.	248
CHAPTER-3	
Figure 3.1: Structure of 5, 7, 4'-trihydroxy-6, 3'-diprenylisoflavone, (MN-02)	274
Figure 3.2: An ORTEP view of (MN-02) in 30% probability with atomic	
numbering scheme	283
Figure 3.3: The packing of the molecules in the crystalline space	
as viewed down the a-axis of the unit cell	28 4
Figure 3.4: The packing of the molecules in the crystalline space	
as viewed down the b-axis of the unit cell	285
Figure 3.5: The packing of the molecules in the crystalline space	
as viewed down the c-axis of the unit cell	28 6
CHAPTER-4	
Figure 4.1: Structure of (MN-01)	313
Figure4.2: An ORTEP view of (MN-02) in 30% probability with atomic	
numbering scheme	319
Figure 4.3: The packing of the molecules in the crystalline space	
as viewed down the a-axis of the unit cell	322
Figure 4.4: The packing of the molecules in the crystalline space	
as viewed down the b-axis of the unit cell	323
Figure 4.5: The packing of the molecules in the crystalline space	
as viewed down the c-axis of the unit cell	324
