Total number of printed pages-11

3 (Sem-6/CBCS) CHE HC 2

2024

CHEMISTRY

(Honours Core)

Paper : CHE-HC-6026

(Organic Chemistry-V)

Full Marks : 60

Time : Three hours

The figures in the margin indicate full marks for the questions.

1. Answer the following questions: $1 \times 7 = 7$

- (a) Give an example of triphenylmethane dye.
- (b) Write the name of the five-membered cyclic hemeacetal form of D-ribose.
- (c) Draw the structure of the product obtained from sodium borohydride reduction of D-glucose.
- (d) In which region NMR spectra are observed?

Contd.

- (e) Which of the following statements is false about glucose?
 - (i) It is a reducing sugar.
 - (ii) It is a disaccharide.
 - (iii) It has a pyranose structure.
 - (iv) It is a polyalcohol.
- (f) Fill up the blank :

Two monosaccharides are joined through a _____ bond to form a disaccharide.

- (g) Mention the configuration of natural rubber.
- 2. Give answer of the following : 2×4=8
 - (a) Draw the Fisher projection diagram of the tetroses.
 - (b) Name the monomer units of Buna-S-
 - (c) (i) Between nitrobenzene and nitrophenol which one is more intensely coloured ?
 - (ii) What are the commonly encountered transitions in UV spectroscopy?

3 (Sem-6/CBCS) CHE HC 2/G 2

(d) Fill up the blanks :

Starch contains about 20% of a watersoluble fraction called _____ and 80% of water-insoluble fraction called _____.

3. Answer **any three** of the following: 5×3=15

(a) (i) Find out A and B in the following reaction: 2

(ii) Write the synthesis of methyl orange. 3

- (b) Write true or false for the following statements: 1×5=5
 - (i) Fructose exists as both pyranose and furanose structures.
 - (ii) The simplest carbohydrate is glyceraldehyde.

3 (Sem-6/CBCS) CHE HC 2/G 3

Olyon and goe Contd.

- (iii) Galactose is not a disaccharide.
- (iv) Hydrolysis of starch with dil. H_2SO_4 at 393K under pressure gives glucose.
- (v) Glucose is also known as dextrose.
- (c) (i) Fill up the blank:

can have similar IR-spectra.

1

- (ii) What do you mean by the term
 'chemical shift'? Name the various
 factors on which the value of
 chemical shift depends. 1+3=4
- (d) How can you distinguish between 3-methylcyclohexene and 4-methylcyclohexene on the basis of mass spectroscopy?
 - (e) Write short notes on : (any two) 2¹/₂×2=5
 - (i) Zeigler-Natta polymerisation
 - (ii) Amylose
 - (iii) Volcanization of rubber
 - (iv) Degree of polymerisation

3 (Sem-6/CBCS) CHE HC 2/G

Contd.

3 (Sem-6/CBCS) CHE HC 2/G

СЛ

CH3 CH₃ CH3 CH₃ (by using NMR spectra)

CH3 -· CH2 - $-CH_2 - CH_3$ and (by using IR spectra)

(11) CH_3CH_2CHO and $CH_2 = CH - CH_2OH$ (by using IR spectra)

5

3×3=9

(11) the following pairs of compounds? How will you differentiate between

(a) (i) Define absorbance. 1

Answer any three of the following :10×3=30

Predict the structural formula for the compounds with the following molecular formulas showing only 2×2=4 PMR signal each: one (i) (q)

(I) C_8H_{18}

(II) $C_2 H_6 O$

Why is TMS used as a reference standard in NMR spectroscopy ? (ii)

(iii) Define:

 $1^{1/2} \times 2=3$

3

(I) Spin-spin splitting

(II) Coupling constant

is methanol a good solvent N for UV spectroscopy but not for IR spectroscopy ? Why (i) (c)

3 (Sem-6/CBCS) CHE HC 2/G

 (ii) By using the Woodward-Fieser rules, calculate the absorption maximum for the following compounds: 2×2=4

 (iii) Explain (by showing the reactions involved) why D-glucose, Dmannose and D-fructose form the same osagene.

(d) (i)

P Give the

Classify each of the following monosaccharids according to both the no. of carbon atoms and the type of carbonyl group present:

 $1 \times 4 = 4$

$$\begin{array}{c} (I) \quad CH_2OH \\ = O \\ HO - \\ - OH \\ - OH \\ CH_2OH \end{array}$$

3 (Sem-6/CBCS) CHE HC 2/G

78

Contd.

3 (Sem-6/CBCS) CHE HC 2/G

.

-

(iii) Draw the most stable conformer of-

(I)	α -D-glucose, and	
(II)	β-D-mannose.	
	(in polar solvent) (III) 1½×2=3	
(i)	Exp (ang	lain with suitable example: y two) 2×2=4
	(I)	Chain-growth polymerisation
	(II)	Fluorescein dye
	(III)	Mc Lafferty rearrangement
(ii)	Cho the	ose the correct option to fill statement: 1
	"Starch is"	
	(I)	a trisaccharide OHO
£+	(II)	also called amylose
	(III)	also called amylopectin
	(IV)	mixture of amylose and amylopectin

3 (Sem-6/CBCS) CHE HC 2/G 10 0120

(1)

Sem-6/CBCS) CHE 1

- (iii) Give one example of each of the following: 1×2=2
 - (I) Carbohydrate that acts as a biofuel.
 - (II) Write two uses of congo red.
- *(iv)* Illustrate the process of Killiani-Fisher synthesis of an aldotetrose from an aldotriose. 3