Total number of printed pages-16

\

3 (Sem-6/CBCS) MAT HC 1 (N/O)

2024

MATHEMATICS

(Honours Core)

Paper : MAT-HC-6016

New Syllabus

(Riemann Integration and Metric Spaces)

Full Marks : 80

Time : Three hours

Old Syllabus

(Complex Analysis)

Full Marks : 60

Time : Three hours

The figures in the margin indicate full marks for the questions.

Contd.

New Syllabus

(Riemann Integration and Metric Spaces) Full Marks : 80 Time : Three hours

1. Answer the following as directed :

 $1 \times 10 = 10$

(a) Let $f:[a,b]\rightarrow R$ be a bounded function and P, Q are partitions of $[a, b]$. If Q is a refinement of P, then

$$
(i) \qquad L(f,Q) \leq L(f,P)
$$

(i)
$$
L(f, Q) \le L(f, P)
$$

\n(ii) $U(f, P) \le U(f, Q)$

$$
(iii) U(f) \leq L(f)
$$

$$
(iv) L(f) \le U(f)
$$

(Choose the correct option)

(b) Find the value of
$$
\int_{0}^{\infty} e^{-x} dx
$$
.

- (c) Show that $\Gamma(1) = 1$.
- (d) Define Cauchy sequence in a metric space.

(e) State whether the following statement is true or false : "Each subset of a discrete metric space is open."

 3 (Sem-6/CBCS) MAT HC $1(N/O)/G$ 2

(f) If the mapping $d: \mathbb{R}^2 \times \mathbb{R}^2 \rightarrow \mathbb{R}$ is defined as $d ((x_1, y_1), (x_2, y_2)) = |x_1 - x_2|$, then which one of the following statements is true?

- (i) d is the usual metric on \mathbb{R}^2
- (ii) d is uniform metric on \mathbb{R}^2
- (iii) d is a pseudo metric on \mathbb{R}^2
- (iv) None of the above statements is true
- (g) Which of the following statements is not true ?
	- (i) In a metric space countable union of open sets is open
	- (ii) In a metric space finite union of closed sets is closed
	- (iii) A non-empty subset of a metric space is closed if and only if its complement is open
	- (iv) None of the above statements is true
- (h) When is a metric space said to be connected.

 $3 (Sem-6/CBCS)$ MAT HC $1(N/0)/G$ 3 Contd.

(i) State whether the following statement is true or false :

> "Image of an open set under a continuous function is open."

- (j) Under what condition the metric spaces (X, d_X) and (Y, d_Y) are said to be equivalent ?
- 2. Answer the following questions : $2 \times 5=10$
	- (a) Let $u, v : [a, b] \rightarrow \mathbb{R}$ be differentiable and u' , v' are integrable on $\lbrack a, b\rbrack$. Then show that

$$
\int_{a}^{b} u(x)v'(x)dx = \left[u(x)v(x)\right]_{a}^{b} - \int_{a}^{b} u'(x)v(x)dx.
$$

- (b) Show that a subset F of a metric space (X, d) is closed if and only if $\overline{F} = F$.
- (c) Let (Y, d_Y) be a subspace of a metric space (X, d_X) and $S_X(z, r)$ and $S_Y(z, r)$ are open balls with center at $z \in Y$ and radius r in the metric space (X, d_X) and (Y, d_Y) respectively.

Prove that $S_Y(z, r) = S_X(z, r) \cap Y$.

3 (Sem-6/CBCS) MAT HC $1(N/0)/G$ 4

- (d) Show that the image of a Cauchy sequence under uniformly continuous function is again a Cauchy sequence.
- (e) Show that a contraction mapping on a metric space is uniformly continuous.
- 3. Answer any four questions : $5 \times 4 = 20$
	- (a) Show that a bounded function $f:[a, b] \to \mathbb{R}$ is integrable if and only if for each $\epsilon > 0$, there exists a partition P of $[a, b]$ such that $U(f, P) - L(f, P) < \varepsilon$.
	- (b) Let q be a continuous function on the closed interval $[a, b]$ and the function f be continuously differentiable on $[a, b]$. Further if f' does not change sign on $[a, b]$, then show that there exists $c \in [a, b]$ such that

 $\int_{a}^{b} f(x)g(x)dx = f(a)\int_{a}^{c} g(x)dx + f(b)\int_{a}^{b} g(x)dx.$ a a contract a contract c

3 (Sem-6/CBCS) MAT HC 1(N/0)/G 5 Contd.

ø

(c) Let (X, d) be a metric space and the function d^* : $X \times X \rightarrow R$ is defined as

$$
d^{*}(x, y) = \frac{d(x, y)}{1 + d(x, y)}, \forall x, y \in X
$$

Show that (X, d^*) is a bounded metric space.

- (d) Let Y be a non-empty subset of the metric space (X, d) . Prove that the subspace (Y, d_y) is complete if and only if Y is closed on (X, d) .
- (e) Show that composition of two uniformly continuous functions is also uniformly continuous.
- (f) Show that a metric space (X, d) is disconnected if and only if there exists a continuous function of (X, d) onto the discrete two element space (X_0, d_0) , i.e., $X_0 = \{0, 1\}$ and d_0 is the discrete metric on X_0 .

3 (Sem-6/CBCS) MAT HC l(N/0)/G 6

4. Answer the following questions : $10\times4=40$

(a) Let f be a function on an interval J with nth derivative $f^{(n)}$ continuous on J. If $a, b \in J$, then show that

$$
f(b) = f(a) + \frac{f'(a)}{1!}(b-a) + \dots + \frac{f^{(n)}(a)}{(n-1)!}(b-a)^{n-1} + R_n
$$

where,
$$
R_n = \int_{a}^{b} \frac{(b-t)^{n-1}}{(n-1)!} f^{(n)}(t) dt
$$

vO Or

Let $f:[0,1]\to R$ be continuous and $c_i \in \left| \frac{l-1}{l}, \frac{l}{l}\right|$ $\frac{n}{n}, \frac{n}{n}$, $n \in \mathbb{N}$.

Then show that

$$
\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^n f(c_i)=\int_0^1 f(x)dx.
$$

Hence show that

$$
\lim_{n \to \infty} \sum_{r=1}^{n} \frac{r}{r^2 + n^2} = \log \sqrt{2} \ . \qquad 5+5=10
$$

 3 (Sem-6/CBCS) MAT HC $1(N/O)/G$ 7 Contd.

(b) Let l_p $(p \ge 1)$ be the set of all sequences of real numbers such that if

$$
x = \{x_n\}_{n \ge 1} \in l_p
$$
, then $\sum_{i=1}^{\infty} |x_i|^p < \infty$.

Prove that the function $d: l_p \times l_p \rightarrow R$

defined by
$$
d(x, y) = \left\{ \sum_{n=1}^{\infty} |x_n - y_n|^p \right\}^p
$$

is a metric on l_p . Also show that l_p is a $4+6=10$ complete metric space.

Or

- (i) Let (X, d) be a metric space and ${x_n}_{n>1}$, ${y_n}_{n>1}$ be two sequences in X such that $x_n \to x$ and $u_n \to u$ as $n \rightarrow \infty$. Then show that $d (x_n, y_n) \rightarrow d (x, y)$ as $n \rightarrow \infty$. 4
- (ii) Let (X, d) be a metric space and Y a subspace of X. Let Z be a subset of Y. Then show that Z is closed inY if and only if there exists a closed set $F \subseteq X$ such that $Z = F \cap Y$.

6

3 (Sem-6/CBCS) MAT HC l(N/0)/G 8

(c) What are meant by contraction mapping and fixed point of a contraction mapping in a metric space? If $T: X \to X$ is a contraction mapping on a complete metric space, then show that T has a unique fixed point. (1+1)+8=10

Or

If (X, d) be a metric space, then show that the following statements are equivalent:

(i) (X, d) is disconnected.

- (ii) There exist two non-empty disjoint subsets A and B , both open in X , such that $X = A \cup B$.
- (iii) There exist two non-empty disjoint subsets A and B, both closed in X, such that $X = A \cup B$.
- (iv) There exists a proper subset of X that is both open and closed in X.

3 (Sem-6/CBCS) MAT HC 1(N/0)/G 9 Contd.

(d) (i) Let f : $[a, b] \rightarrow R$ be integrable and $F(x) = \int_0^x f(t)dt$; $x \in [a, b]$ Show a

that F is continuous on $[a, b]$. Also show that F is differentiable at $x \in [a, b]$ if f is continuous at $x \in [a, b]$ and $F'(x) = f(x)$. 7

(ii) Let (X, d) be a metric space and $\rho: X \times X \rightarrow R$ be defined by

$$
\rho(x,y)=\frac{d(x,y)}{1+d(x,y)}\quad;\quad x,y\in X\;.
$$

Show that d and ρ are equivalent 3 metrics.

 \overline{D}

Or

- (iii) Show that a subset G of a metric space (X, d) is open if and only if it is the union of all open balls5 contained in G.
- (iv) Give example, with justification, of a homeomorphism from a metric space onto another metric space5 which is not an isometry.

 3 (Sem-6/CBCS) MAT HC $1(N/0)/G$ 10

: Old Syllabus Full Marks : 60 (Complex Analysis) Time ; Three hours

1. Answer the following as directed : $1 \times 7 = 7$ (a) Determine the accumulation point of the set $z_n = -\frac{1}{n}(n = 1, 2, 3, \cdots)$

(b) Describe the domain of $f(z) = \frac{z}{z + \overline{z}}$

- (c) Define an entire function.
- (d) Determine the singular points of

$$
f(z) = \frac{2z+1}{z(z^2+1)}
$$

(e) The value of loge is (i) 1 (ii) $1 + 2n\pi i$ Alate for (iii) $2n\pi i$ (iv) 0 (Choose the correct option)

 $3(Sem-6/CBCS)$ MATHC $1(N/0)/G$ 11 Contd.

(f)
$$
\lim_{n \to \infty} \left(-2 + i \frac{(-1)^n}{n^2} \right)
$$
 is equal to
\n(i) 0 (ii) -2
\n(iii) -2 + i (iv) limit does not exist
\n(Choose the correct option)
\n(g) The power expression for $\cos z$ is
\n(i) $\frac{e^z + e^{-z}}{2}$ (ii) $\frac{e^{iz} + e^{-iz}}{2}$
\n(iii) $\frac{e^{iz} + e^{-iz}}{2i}$ (iv) $\frac{e^z - e^{-z}}{2}$
\n(Choose the correct option)

2. Answer the following questions: 2×4=8 (a) Sketch the set

 $|z-1+i| \leq 1$

- (b) Prove that $f'(z)$ exists every where for the function $f(z) = iz + 2$.
- (c) If $f(z) = \frac{z}{z}$, prove that *lim* $f(z)$ does \overline{z} ^{, prove} that $\lim_{z\to 0}$ not exist.

(d) Evaluate
$$
\int_{1}^{2} \left(\frac{1}{t} - i\right)^2 dt.
$$

3 (Sem-6/CBCS) MAT HC l(N/0)/G 12

- 3. Answer any three questions from the following: $5 \times 3 = 15$
	- (a) (i) Show that if e^z is real, then $Im z = n\pi (n = 0, \pm 1, \pm 2, \cdots)$ 3
		- (ii) Show that $exp(2\pm 3\pi i) = -e^2$. 2
	- (b) Suppose that $f(z) = u(x, y) + iv(x, y)$, where $z = x + iy$ and $z_0 = x_0 + iy_0$, $w_0 = u_0 + iv_0$. Then prove that

 $\lim_{z\to z_0} f(z) = w_0$ if

 \overline{O}

ŗ

 $\lim_{(x, y) \to (x_0, y_0)} u(x, y) = u_0$ and

 $\lim_{(x, y) \to (x_0, y_0)} v(x, y) = v_0$

(c) Show that $f'(z)$ exists everywhere, when $f(z) = e^z$.

r dz (d) Evaluate $\sqrt{\frac{2}{z}}$, where C is the top half of the circle $|z| = 1$ from $z = 1$ to $z = -1$.

3 (Sem-6/CBCS) MAT HC 1(N/0)/G 13 Contd.

(e) Let C denote the positively oriented boundary of the square whose sides lie along the lines $x = +2$ and $y = \pm 2$. Applying Cauchy's integral formula,

$$
\text{evaluate } \int\limits_{C} \frac{e^{-z}dz}{z - \left(\frac{\pi i}{2}\right)}.
$$

- 4. Answer *either (a)* or *(b)* and *(c)*:
	- (a) Suppose that $f(z) = u(x, y) + iv(x, y)$ and that $f'(z)$ exists at a point $z_0 = x_0 + iy_0$. Prove that the first order partial derivatives of u and v must exist at (x_0, y_0) and they must satisfy the Cauchy-Riemann equations $u_x = v_y$ and $u_{\mu} = -v_{x}$ there.

Also show that $f'(z) = u_x + iv_x = v_y - iu_y$ where partial derivatives are to be evaluated at (x_0, y_0) . 10

Or

(b) If z_0 and w_0 are points in the z-plane and w -plane respectively, then prove that $\lim_{z \to z_0} f(z) = \infty$ if and only if $\lim_{f(x) = 0} \frac{1}{f(x)} = 0$ $lim_{z\to z_0} \frac{1}{f(z)}$

 $iz + 3$ Hence show that $\lim_{z \to -1} \frac{z+3}{z+1} = \infty$ $4 + 2 = 6$

3 (Sem-6/CBCS) MAT HC $1(N/0)/G$ 14

(c) If $w = f(z) = \overline{z}$, examine whether dw $\frac{d}{dz}$ exists or not.

5. Answer *either* (a) or (b):

(a) Let C denote a contour of length L and suppose that a function $f(z)$ is piecewise continuous on C. If M is a non-negative constant such that $|f(z)| \leq M$ for all points z on C at which $f(z)$ is defined, then prove that

$$
\left|\int\limits_C f(z)dz\right|\leq ML
$$

€

 ϵ

Hence show that

 $\left| \frac{dz}{z^2 - 1} \right| \le \frac{\pi}{3}$, where *C* is the arc of

the semicircle $|z|=2$ from $z=2$ to $z = 2i$ that lies in the first quadrant. 10

Or

(b) State and prove Liouville's theorem.

3 (Sem-6/CBCS) MAT HC 1(N/0)/G 15 Contd.

 $\overline{4}$

6. Answer either (a) , (b) , (c) or (d) :

- (a) Prove that if a series of complex numbers converges, then the nth term converges3 to zero as n tends to infinity.
- (b) Test the convergency of the sequence

$$
z_n = \frac{1}{n^3} + i \left(n = 1, 2, \cdots \right)
$$
 3

(c) Find Maclaurin's series for the entirefunction $f(z) = l^z$. 4

Or

(d) Suppose that a function f is analytic throughout a disc $|z-z_0| < R_0$ centred at z_0 and with radius R_0 . Then prove that $f(z)$ has a power series representation

$$
f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n \quad (|z - z_0| < R_0)
$$

where $a_n = \frac{f^n(z_0)}{n!} (n = 0, 1, 2, \cdots)$

3 (Sem-6/CBCS) MAT HC 1(N/0)/G 16 3200

h.

Y)