Total number of printed pages-11

•

3 (Sem-4/CBCS) MAT HC 1

2024

MATHEMATICS

(Honours Core)

Paper : MAT-HC-4016

(Multivariate Calculus)

Full Marks : 80 Time : Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following questions as directed : 1×10=10
 - (a) If f(x, y) = ln(y x), then find domain of it.
 - (b) Define level curve of a function f(x, y) at a constant C.
 - (c) Find f_x if $f(x, y) = (\sin x^2) \cos y$.

(d) If $f(x, y) = \sin xy$, then df is

- (i) $y\cos xy \, dx + x\cos xy \, dy$
- (ii) $y\cos xy \, dy + x\cos xy \, dx$
- (iii) $y\cos x \, dx + x\cos y \, dy$
- (iv) $\cos xy \, dx + \cos xy \, dy$ (Choose the correct option)

(e) Evaluate $\frac{\partial(x, y)}{\partial(r, \theta)}$ for the transformation $x = r\cos\theta, y = r\sin\theta.$

(f) If $P_0(x_0, y_0)$ is a critical point of f(x, y) and f has continuous 2nd order partial derivatives in a disk centered at (x_0, y_0) and $D = f_{xx}f_{yy} - f_{xy}^2$, then a relative minimum occurs at P_0 , if

- (i) $D(x_0, y_0) > 0$ and $f_{yy}(x_0, y_0) < 0$
- (ii) $D(x_0, y_0) > 0$ and $f_{yy}(x_0, y_0) > 0$
- (iii) $D(x_0, y_0) < 0$ and $f_{yy}(x_0, y_0) < 0$

(iv) $D(x_0, y_0) < 0$ and $f_{yy}(x_0, y_0) > 0$ (Choose the correct option)

(g) The curl of a vector field V(x, y, z) = u(x, y, z)i + v(x, y, z)j + w(x, y, z)k is

(i)
$$\left(\frac{\partial w}{\partial y} + \frac{\partial v}{\partial z}\right)i + \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x}\right)j + \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}\right)k$$

(ii) $\left(\frac{\partial w}{\partial y} - \frac{\partial v}{\partial z}\right)i + \left(\frac{\partial u}{\partial z} - \frac{\partial w}{\partial x}\right)j + \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}\right)k$

(iii)
$$\left(\frac{\partial v}{\partial z} - \frac{\partial w}{\partial y}\right) i + \left(\frac{\partial w}{\partial x} - \frac{\partial u}{\partial z}\right) j + \left(\frac{\partial u}{\partial y} - \frac{\partial v}{\partial x}\right) k$$

(iv)
$$\left(\frac{\partial u}{\partial y} - \frac{\partial v}{\partial x}\right) i + \left(\frac{\partial v}{\partial z} - \frac{\partial w}{\partial y}\right) j + \left(\frac{\partial w}{\partial x} - \frac{\partial u}{\partial z}\right) k$$

(Choose the correct option)

- (h) Define work as a line integral:
- (i) State Green's theorem on a simply connected region D.
- (j) If a vector field F and curl F are both continuous in a simply connected region D on \mathbb{R}^3 , then F is conservative in D if curl $F \neq 0$. State whether this statement is true or false.

3 (Sem-4/CBCS) MAT HC 1/G 3

2. Answer the following questions :

2×5=10

(a) Show that the function f is continuous at (0, 0) where

$$f(x, y) = \begin{cases} y \sin \frac{1}{x} , & x \neq 0 \\ 0 , & x = 0 \end{cases}$$

- (b) Compute the slope of the tangent line to the graph of $f(x, y) = x^2 \sin(x+y)$ at the point $P\left(\frac{\pi}{2}, \frac{\pi}{2}, 0\right)$ in the direction parallel to the XZ plane.
- (c) Evaluate $\iint_{R} \frac{2xy}{x^{2}+1} dA$ where $0 \le x \le 1$, $1 \le y \le 3$.
- (d) Show that div F = 0 and curl F = 0, if F is a constant vector field.

(e) Evaluate
$$\int_{0}^{21} \int_{0}^{2} 8x^2yz^3dxdydz$$

(a) (i) Find
$$\frac{\partial w}{\partial r}$$
 where $w = e^{2x-y+3z^2}$ and $x = r+s-t, y = 2r-3s, z = cosrst$.

- (ii) Show that $\lim_{(x, y)\to(0, 0)} \frac{x+y}{x-y}$ does not exist. 2
- (b) (i) If f has a relative extremum at $P_0(x_0, y_0)$ and both f_x and f_y exist at (x_0, y_0) , then prove that $f_x(x_0, y_0) = f_y(x_0, y_0) = 0$. 2
 - (ii) Discuss the nature of the critical points of the function

$$f(x, y) = (x-2)^2 + (y-3)^4$$
. 3

(c) Use a polar double integral to show that a sphere of radius *a* has volume $\frac{4}{3}\pi a^3$.

Contd.

 $5 \times 4 = 20$

- (d) An object moves in the force field $F = y^2i + 2(x+1)yj$. How much work is performed as the object moves from the point (2, 0) counterclockwise along the elliptical path $x^2 + 4y^2 = 4$ to (0, 1), then back to (2, 0) along the line segment joining the two points.
- (e) (i) Evaluate $\int_{C} (x^{2} + y^{2}) dx + 2xy dy$ where C is the quarter circle $x^{2} + y^{2} = 1$ from (1, 0) to (0, 1).
 - (ii) A wire has the shape of the curve $x = \sqrt{2} \sin t, y = \cos t, z = \cos t$ for $0 \le t \le \pi$. If the wire has density $\delta(x, y, z) = xyz$ at each point (x, y, z), find its mass. 2
- (f) Find the volume of the solid in the first octant that is bounded by the cylinder $x^2 + y^2 = 2y$, the half cone $z = \sqrt{x^2 + y^2}$ and the *xy*-plane.

- 4. Answer the following questions : 10×4=40
 - (a) (i) Let f(x, y) be a function that is differentiable at $P_0(x_0, y_0)$. Prove that f has a directional derivative in the direction of the unit vector $u = u_1 i + u_2 j$ given by

$$D_u f(x_0, y_0) = f_x(x_0, y_0)u_1 + f_y(x_0, y_0)u_2$$
3

- (ii) Find the directional derivative of $f(x, y) = ln(x^2 + y^2)$ at $P_0(1, -3)$ in the direction of v = 2i - 3j using the gradient formula. 3
- (iii) Find the equations of the tangent plane and the normal line to the cone $z^2 = x^2 + y^2$ at the point where x = 3, y = 4 and z > 0.

OR

(i) Prove that if f(x, y) is

differentiable at (x_0, y_0) , then it is continuous there. 4

3 (Sem-4/CBCS) MAT HC 1/G 7

(ii) When two resistances R_1 and R_2 are connected in parallel, the total

resistance R satisfies $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$.

If R_1 is measured as 300 ohms with a maximum error of 2% and R_2 is measured as 500 ohms with a maximum error of 3%, then find the maximum percentage error in R. 6

(b) (i) Use the method of Lagrange multipliers to minimize

 $f(x, y) = x^2 - xy + 2y^2$ subject to 2x + y = 22. 5

(ii) Find all relative extrema and saddle points on the graph of $f(x, y) = x^2y^4$. 5

OR

(i) Find the absolute extrema of the function $f(x, y) = e^{x^2 - y^2}$ over the disk $x^2 + y^2 \le 1$. 6

(ii) Suppose E be an extreme value of f subject to the constraint g(x, y) = C. Prove that the Lagrange multiplier λ is the rate of change of E with respect to C.

(c) (i) Evaluate
$$\int_{0}^{2} \int_{0}^{\sqrt{2x-x^{2}}} y\sqrt{x^{2}+y^{2}} \, dy \, dx$$

by converting to polar coordinates.

(ii) Evaluate $\iint_D \int e^z dv$ where D is the region described by the inequalities $0 \le x \le 1, \ 0 \le y \le x$ and $0 \le x \le x + y$. 5

OR

(i) Find the volume of the solid bounded above by the plane z = yand below in the xy-plane by the part of the disk $x^2 + y^2 \le 1$ in the 1st quadrant. 5

3 (Sem-4/CBCS) MAT HC 1/G 9

(ii) Evaluate : $\iint_D x \, dV$ where D is the solid in the 1st octant bounded by the cylinder $x^2 + y^2 = 4$ and the plane 2y + z = 4.

(d) (i)

Let C be a piecewise smooth curve that is parameterized by a vector function R(t) for $a \le t \le b$ and let F be a vector field that is continuous on C. If f is a scalar function such that $F = \nabla f$, then prove that $\int_C F dR = f(Q) - f(P)$ where Q = R(b) and P = R(a) are the end points of C.

Using it evaluate the line integral $\int_{C} F.dR$, where

 $F = \nabla (e^x \sin y - xy - 2y)$ and C is the path described by

$$R(t) = \left[t^3 \sin\frac{\pi}{2}t\right] i - \left[\frac{\pi}{2}\cos\left(\frac{\pi}{2}t + \frac{\pi}{2}\right)\right] j$$

for $0 \le t \le 1$ 5+3=8

(ii) Determine whether the vector field $F(x, y) = \frac{(y+1)i - xj}{(y+1)^2}$ is conservative. 2

OR

- (i) Evaluate $\oint_C \left(\frac{1}{2}y^2 dx + z dy + x dz\right)$
 - where C is the curve of intersection of the plane x + z = 1 and the ellipsoid $x^2 + 2y^2 + z^2 = 1$, oriented counterclockwise as viewed from above. 6
- (ii) Evaluate $\iint_{S} F.NdS$ where

 $F = x^{2}i + xyj + x^{3}y^{3}k$ and S is the surface of the tetrahedron bounded by the plane x + y + z = 1and the coordinate planes with outward unit normal vector N.

4