2012

MATHEMATICS

(Major)

Paper: 3.1

(Abstract Algebra)

Full Marks: 80

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Answer the following questions:

1×10=10

(a) Let f be a mapping from the additive group of integers to the group $G = \{-1, 1\}$ under multiplication, defined by

$$f(x) = \begin{cases} 1, & \text{if } x \text{ is even} \\ -1, & \text{if } x \text{ is odd} \end{cases}$$

Then which of the following statements is true?

- (i) f is not a homomorphism
- (ii) f is an onto homomorphism, but not one-one
- (iii) f is an isomorphism
- (iv) f is a homomorphism, but not oneone and onto

A13-1500/95

(Turn Over)

- (b) What is the natural homomorphism from a group onto its quotient group?
- (c) State Cayley's theorem for groups.
- (d) Give the example of an infinite integral domain which is not a field.
- (e) What is a simple ring?
- (f) Let $R = \{0, 1\} \mod 2$. What is the characteristic of R?
- (g) State whether the following statement is true or false:

Let G be a non-Abelian group. Then the map $\theta: G \to G$ given by $\theta(x) = x^{-1}$ is an automorphism of G.

- (h) Let G be a group and $a \in G$. What is the normalizer of a in G?
- (i) Define Euclidean ring.
- (j) State whether the following statement is true or false:

A group of order p^2 , where p is a prime, is Abelian.

2. Answer the following questions:

(a) Let G and G' be two groups and $f: G \rightarrow G'$ be a homomorphism. Show that f is one-one if $\ker f = \{e\}$, where e is the identity element in G.

A13-1500/95

(Continued)

 $2 \times 5 = 10$

- (b) The union of two space is again whether it is true
- (c) What do you permutations? Consimilar permutation
 - (d) Let R[x] be the ring ring R. Show that then R[x] is also of
 - (e) Show by an example R_1 and R_2 , we can $f: R_1 \rightarrow R_2$ such to of R_2 , whereas 1
- 3. Answer the following of
 - (a) Let f: G → G' be a from group G to G of G and H' be Show that f⁻¹ (H
 G containing ker f
 - (b) Find all the idem elements of the rin

If in a ring R with

 $(xy)^2 = x^2$

then show that R

A13—1500**/95**

(c) Let G be a group and α∈ G has only two conjugates in G. Show that N(a) is a normal subgroup of G.

Or

Prove that a group of order 30 has either a normal subgroup of order 5 or a normal subgroup of order 3.

(d) Show that a ring homomorphism maps the zero element onto the zero element. Let

$$R_1 = \left\{ \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} : a \in R \right\}$$

where R is a ring. Prove that the mapping

$$f: R_1 \to R, f\begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} = a$$

is an isomorphism between the rings R_1 and R.

4. Answer the following questions:

10×4=40

(a) Prove that the set A_n of all even permutations of S_n $(n \ge 2)$ is a normal subgroup of S_n and $o(A_n) = \frac{o(S_n)}{2}$. Find all the normal subgroups of S_4 .

7+3

A13—1500**/95**

(Continued)

0

Or

Prove the fundamental homomorphism. Show cyclic group is isomorph group of integers.

(b) Prove that an ideal M ring R with unity is $\Leftrightarrow R/M$ is a field. E Z/<4> is a field or no

Let R be a finite (n domain. Prove that o(R) a prime. Find all the ide

- (with usual notation).
 (c) (i) State Sylow's 1st theorems.
 - (ii) Define inner aut group G. Prove th inner automorphis group of Aut G, w group of all autom

Or

Prove that the nur of the conjugacy of finite group G is of N(a) is the normal denotes the centre that

o(G) = o(Z(G)) +

A13—1500/95

(d) Show that an integral domain can be imbedded into a field.

Or

Find the field of quotients of the integral domain $\mathbb{Z}[i] = \{a+ib : a, b \in \mathbb{Z}\}.$

State the cold 1 0 2 der which a set of

MATHEMATICS

(Major)

Paper: 3.2

(Linear Algebra and Vector)

Full Marks: 80

Time: 3 hours

The figures in the margin indicate full marks for the questions

GROUP-A

(Linear Algebra)

(Marks: 40)

1. Answer the following: $1 \times 6 = 6$

- Is the following statement true or false? If false, correct the statement : For linearly independent vectors v_1 , v_2 , v_3 in a vector space V the set $\{v_1, v_3\}$ is a linearly dependent set.
- What is the basis of the vector space (b) $V = \{0,..\}$?

A13-1500/96

(Turn Over)

- (c) State the condition under which a set of m vectors spans \mathbb{R}^n .
- (d) What are the eigenvalues of an upper triangular matrix?
 - (e) State Cayley-Hamilton theorem.
 - (f) Let $T: V \to V$ be a linear operator. State one condition on T so that 0 is an eigenvalue of T.

2. Answer the following:

 $2 \times 2 = 4$

10

- (a) Consider the vector space V = R³ over R. If U and W are the xy-plane and yz-plane respectively, then determine dim(U ∩ W).
- (b) Find all eigenvalues of the operator

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$

defined by

$$T(x, y) = (3x + 3y, x + 5y)$$

- 3. Answer any one part :
 - (a) (i) Let V be the vector space of all functions from the real field \mathbb{R} into \mathbb{R} . Show that W is a subspace of V, where

$$W = \{f : f(7) = f(1)\}$$

A13—1500/96

(Continued)

- (ii) Let V be a finite of space. Prove that has the same nu
- (iii) Determine whet
- $S = \{(2, 4, -3), (6, 4, -3),$
- finite collection of vector space V(F) V(F). Is it true subspaces?
 - dimension n. Provectors of V are lifter prove tha \cdots , ν_n span V, then independent.

(ii) Let V(F) be a

- (iii) Find a basis and subspace U of \mathbb{R}^4 $U = \{(a, b, c, d) \mid a \in \mathbb{R}^4 \}$
- 4. Answer any two parts:
 - (a) (i) Let V be the vect square matrices of and M be an arbit Show that the defined by T(A) = 1 is linear.

A13—1500**/96**

- (ii) Let $T: \mathbb{R}^2 \to \mathbb{R}$ be the mapping for which T(1, 1) = 3 and T(0, 1) = -2. Then find T(x, y).
- (b) Verify the rank nullity theorem for the linear mapping $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by

$$T(x, y, z) = (x + y, y + z)$$

5

5

10

(c) Let U and V be vector spaces over a field K. If $\dim U = m$, $\dim V = n$, then prove that dim Hom(U, V) = mn, where Hom(U, V) denotes the vector space of all

linear mappings from U into V.

- 5. Answer any one part :
 - (i) Find the eigenvalues and the (a) corresponding eigenvectors of the following matrix:

$$A = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{pmatrix}$$

(ii) Find the minimal polynomial of the matrix

$$A = \begin{pmatrix} 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4 \end{pmatrix}$$

Are the characteristic polynomial of A and the minimal polynomial of A 5+5=10 same?

(i) Show that the following (b) linear equations

Hence solve them
$$x+2y-3x-y+2$$
$$2x-2y+3$$

- x y +(ii) Prove that the min
- of a matrix A divi nomial which has (iii) Use Cayley-Hamilt
 - find the inverse of $\begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix}$

GROUP-B (Vector) (Marks: 40)

- 6. Answer the following:
 - Write the geometrical in scalar triple product \vec{a} .
 - Does associative law for of vectors hold?

A13-1500/96

(Continued) A13—1500/96

- (c) Write the condition for a vector function \overrightarrow{f} of a scalar variable t to be of constant magnitude.
- (d) Find div \vec{r} , where $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$.
- 7. Answer the following:

2×3=6

- (a) A particle moves along the curve $x=3t^2$, $y=t^2-2t$, $z=t^3$, where t is the time. Find the component of velocity at time t=1 in the direction $\hat{i}+\hat{j}-\hat{k}$.
- (b) Show that the vector

$$\vec{v} = yz\hat{i} + zx\hat{j} + xy\hat{k}$$

is irrotational.

(c) Evaluate

$$\iint_{\Omega} \vec{r} \cdot \hat{n} dS$$

where S is a closed surface. (Symbols with usual meanings.)

8. Answer any one part :

10

(a) (i) Prove that

$$|\vec{b} \times \vec{c} \times \vec{c} \times \vec{a} \times \vec{a} \times \vec{b}| = |\vec{a} \cdot \vec{b} \cdot \vec{c}|^2$$

A13—1500**/96**

(Continued) A13-1500/96

- (ii) Show that grad perpendicular to $\phi(x, y, z) = c$, where Further show that c
- (iii) Given

 7(a = 3 = 2 3 ± 4

$$\vec{r}(t) = \hat{i} - 2\hat{j} + 2$$
$$= 2\hat{i} - \hat{j} + 4$$

then evaluate

$$\int_{2}^{3} \left(\overrightarrow{r} \cdot \frac{d}{d} \right)$$

(b) (i) Prove that $(\vec{a} + \vec{b} + \vec{b} + \vec{c} + \vec{c} + \vec{c})$

 $x^2 + y^2 + z^2 = 9$ and at the point (2, -1,

(iii) If
$$\vec{F} = 3xy\hat{i} - y^2\hat{j}$$
, then

where C is the cur xy-plane from (0, 0

 $\int_{\Omega} \vec{F} \cdot$

- 9. Answer any two parts:
 - (a) (i) If

$$\frac{d\vec{r}}{dt} = \vec{w} \times \vec{r}$$

and

$$\frac{d\vec{s}}{dt} = \vec{w} \times \vec{s}$$

show that

$$\frac{d}{dt}(\vec{r}\times\vec{s}) = \vec{w}\times(\vec{r}\times\vec{s})$$

(ii) If

$$\vec{A} = \cos xy\hat{i} + (3xy - 2x^2)\hat{j} + (3x + 2y)\hat{k}$$

then find

$$\frac{\partial A}{\partial x \partial y}$$

(b) If \vec{a} is a constant vector and

 $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$

show that-

- (i) $\operatorname{div}(\vec{a} \times \vec{r}) = 0$
- (ii) $\operatorname{curl}(\vec{a} \times \vec{r}) = 2\vec{a}$

$$\nabla \times (\nabla \times \overrightarrow{F}) = \nabla (\nabla \cdot \overrightarrow{F}) - \nabla^2 \overrightarrow{F}$$

A13-1500/96

(Continued

3+2=5

2+3=5

- Answer any one part : 5×2=10
 - (i) Find the value of vectors $2\hat{i} \hat{j} + \hat{k}$,
 - $3\hat{i} + x\hat{j} + 5\hat{k}$ are copla

(ii) Let \vec{a} , \vec{b} , \vec{c} be three such that

$$\vec{a} \times (\vec{b} \times \vec{c}) = \vec{b}$$
 and \vec{c} are non-p

then find the angles with \vec{b} and \vec{c} .

(iii) If $\vec{F} = (2x^2 - 3z)\hat{i} - 2x$ evaluate

$$\int_V \operatorname{div} \overrightarrow{F} \cdot dV$$

where V is the

bounded by the plan z=0 and 2x+2y+z=

(i) Prove that

$$(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = [\vec{a} \ \vec{b} \ \vec{d}]$$

Hence express any terms of \vec{a} , \vec{b} , \vec{c} prov not coplanar.

13—1500**/96**

(ii) Evaluate rung and your rawning .01

and that on a local
$$\iint_S \vec{F} \cdot \hat{n} dS$$
 but the

where

$$\overrightarrow{F} = yz\hat{i} + zx\hat{j} + xy\hat{k}$$

and S is that part of the surface of the sphere $x^2 + y^2 + z^2 = 1$ which lies in the first octant.

A13-1500/96 3 (Sem-3) MAT M 2