Ace NO - 35'18

3 (Sem-3) MAT M 1

2014

MATHEMATICS

(Major)

Paper: 3.1

(Abstract Algebra)

Full Marks: 80

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Answer the following as directed: 1×10=10
 - (a) Let G and G' be finite groups such that gcd(o(G), o(G')) = 1. Define a homomorphism from G to G'.
 - (b) State the fundamental theorem of group homomorphism.
 - (c) Let $f: G \to G'$ be a group homomorphism. Let $a \in G$ be such that o(a) = n and o(f(a)) = m. Then o(f(a)) / o(a) and f is one-one if and only if
 - (i) m > n
 - (ii) m < n
 - (iii) m = n
 - (iv) m=n=1

(Choose the correct option)

A15-1700/358

(Turn Over)

- (d) Let $R = \{0, 1, 2\} \mod 3$. What is the characteristic of R?
- (e) State whether True or False:
 If an element a of a group G has only two conjugates in G, then N(a) is a normal subgroup of G.

(N(a): normalizer of a in G)

- (f) State Cauchy's theorem for a finite group G.
 - (g) If T is an automorphism of a group G, then o(Ta) = o(a) for all $a \in G$. Now, for all $a, b \in G$
 - (i) $o(bab^{-1}) = o(b)$
 - (ii) $o(bab^{-1}) = o(a)$
 - (iii) $o(bab^{-1}) = o(Tb)$
 - $(iv) o(bab^{-1}) = 2$

(Choose the correct option)

(h) Give an example of a Euclidean domain.

(i) Let R[x] be the ring R and let

f(x) = a

1

and g(x) = b

If $f(x) + g(x) \neq 0$

10 sum (i) $\deg(f(x) +$

(ii) $\deg(f(x) +$

(iii) $\deg(f(x) + g(x)) = g(x) + g(x)$

- (j) State True or
 In a principanon-zero prim
- 2. Answer the following
 - (a) Let \mathbb{Z} be the a and $\phi: \mathbb{Z} \to \mathbb{Z}$ $x \in \mathbb{Z}$. Examine
 - (b) If R is a ring we elements, the idempotent e,
 - (c) The sum of two space is again

 Justify whether

A15-1700/358

A15-1700/358

(Continued)

- (d) Let G be a group and Z(G) be the centre of G. Show that if $cl(a) = \{a\}$, then $a \in Z(G)$. (cl(a): the conjugacy class of a)
- (e) Let f be a homomorphism from a ring R onto a ring R'. If e is the unity of R, then f(e) is the unity of R'.Justify whether this statement is true or
- **3.** Answer the following questions: $5\times4=20$

false.

(a) Let $G = (\mathbb{R}, +)$, $G' = (\{Z \in \mathbb{C} : |Z| = 1\}, \cdot)$ and $\phi : G \to G'$ is defined by

 $\phi(x) = \cos 2\pi x + i \sin 2\pi x, \quad x \in \mathbb{R}$

Prove that ϕ is a homomorphism and determine $\ker \phi$.

O

If $f: G \xrightarrow{\text{onto}} G'$ is a group homomorphism, prove that H is a normal subgroup of G if and only if f(H) is a normal subgroup of G'.

(b) If R is a division ring, then show that the centre Z(R) of R is a field.

Or

Let R be a ring having more than one element such that aR = R, for all $0 \neq a \in R$. Show that R is a division ring.

A15-1700/358

(Continued)

- (c) Prove that a g is prime, is A
- (d) Prove that endomain is a
- 4. Answer the follow
 - (a) Let H and K of a group G s

N be the su integers. Provide group H absolute value

(b) Let A, B, C 1 that $B \subseteq A$. S $A \cap (B+C) =$

> Let *R* be a co Show that evalso a prime if every idea is a field.

(c) State Sylow's 1st and 3rd theorems for a group G. Let o(G) = pq, where p, q are distinct primes such that p < q, p/q - 1. Show that G is cyclic. 2+8=10

Jasol Lagron Or all mountable

Let G be a finite group and $a \in G$. Prove

$$o(\operatorname{cl}(a)) = \frac{o(G)}{o(N(a))}$$

(d) Show that $\mathbb{Z}[\sqrt{2}] = \{a + \sqrt{2}b : a, b \in \mathbb{Z}\}$ is a Euclidean domain. 10

ban shar to sping sympor Prove that any ring can be imbedded into a ring with unity.

*** Tiests of a rung & such

2014

MATHEMATICS

(Major)

Paper : 3.2

Full Marks: 80

Time: 3 hours

The figures in the margin indicate full marks for the questions

GROUP-A

(Linear Algebra)

(Marks: 40)

- 1. Answer the following as directed: 1×6=6
 - (a) Let W be a subset of the vector space $\mathbb{R}^3(\mathbb{R})$ defined by

 $W = \{(x, y, z) \mid x, y, z \in \mathbb{R} \text{ and } x + 2y + 4z = 4\}$

- Is W a subspace? Justify.
- (b) Show that each non-zero singleton set {x} of a vector space is linearly independent.
- (c) If M is the vector space of all $m \times n$ matrices, determine dim M.

A15-1700/359

(Turn Over)

- (d) The product of all the eigenvalues of a square matrix A is equal to
 - (i) 0

ii) 1

(iii) |A|

 $(iv) \frac{1}{|A|}$

(Choose the correct answer)

(e) The matrix

$$A = \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix}$$

satisfies the equation

(i)
$$A^2 + 5A + 7I = 0$$

(ii)
$$A^2 + 5A - 7I = 0$$

(iii)
$$A^2 - 5A - 7I = 0$$

(iv)
$$A^2 - 5A + 7I = 0$$

(Choose the correct answer)

- (f) State the condition for a system of n equations in n unknowns to have a unique solution.
- 2. Answer the following:

2×2=4

- (a) Show that the union of two subspaces of a vector space is not necessarily a subspace of the vector space.
- (b) Show that the matrices A and A' have the same eigenvalues.

A15-1700/359

(Continued)

- 3. Answer any one part :
 - (a) (i) Let U and V a vector spanthat $V = U \oplus U \cap W = \{0\}$.
 - (ii) Show that the (2, 5, 1) and independent in $\mathbb{R}^3(\mathbb{R})$.
 - (iii) If V is a finite space and linearly indep then prove the to form a basic
 - (b) (i) If W_1 and W a finite dimer V(F), then sho $\dim(W_1 + W_2) =$
 - (ii) Define basis
 Determine wh
 vectors (1, 1, 2
 form a basis

 R ³ (R).

4. Answer any two parts:

(a) Define rank and nullity of a linear transformation T from a vector space V(F) to a vector space W(F). Find rank and nullity of the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by

$$T(x, y, z) = (x + y + z, 2x + 2y + 2z)$$
 1+4=

- (b) Let T be a linear operator on a vector space V(F) and rank $T^2 = \operatorname{rank} T$. Then show that range $T \cap \ker T = \{0\}$.
- (c) Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be a linear mapping defined by

$$T(x, y, z) = (3x + 2y - 4z, x - 5y + 3z)$$

Find the matrix *A* representing *T* relative to the bases $B = \{(1, 1, 1), (1, 1, 0), (1, 0, 0)\}$ of $\mathbb{R}^3(\mathbb{R})$ and $B' = \{(1, 3), (2, 5)\}$ of $\mathbb{R}^2(\mathbb{R})$.

5. Answer any one part :

10

5

(a) (i) Find the eigenvalues and the corresponding eigenvectors of the matrix

$$A = \begin{pmatrix} 5 & 4 \\ 1 & 2 \end{pmatrix}$$

A15-1700/359

(Continued)

(ii) State the Car Verify it for

Hence find A^{-1} .

(b) (i) Let

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 2 \\ 0 & 0 \end{pmatrix}$$

Show that A characteristic the same m

(ii) Show that th

-x 2x +

-2x +

is consiste them.

GROUP—B

(Vector)

(Marks: 40)

6. Answer the following as directed:

 $1 \times 4 = 4$

- (a) Evaluate $(\vec{r} \cdot \hat{i})\hat{i} + (\vec{r} \cdot \hat{j})\hat{j} + (\vec{r} \cdot \hat{k})\hat{k}$.
- (b) Write the value of $\operatorname{div}(\nabla \phi \times \nabla \psi)$.
- (c) If φ is a continuously differentiable scalar point function, the value of curl grad φ is
 - (i)
 - (ii) -1
 - (iii) o
 - (iv) None of the above

(Choose the correct answer)

(d) If C is a closed curve, find $\oint \vec{r} \cdot d\vec{r}$.

7. Answer the following:

2×3=6

(a) Prove the identity

$$\vec{a} \times [\vec{a} \times (\vec{a} \times \vec{b})] = (\vec{a} \cdot \vec{a})(\vec{b} \times \vec{a})$$

- (b) Find div curl \vec{F} , if $\vec{F} = x^2y\hat{i} + xz\hat{j} + 2yz\hat{k}$.
- (c) Interpret the relations

$$\vec{r} \cdot \frac{d\vec{r}}{dt} = 0$$
 and $\vec{r} \times \frac{d\vec{r}}{dt} = \vec{0}$

A15-1700/359

(Continued)

- 8. Answer any one p
 - (a) (i) Prove that $(\vec{a} \times \vec{b}) \cdot (\vec{c})$
 - (ii) Prove $\vec{r} = x\hat{i} + y$

(iii) If

4) --

and

 \vec{B}

calculate

at the po

(b) (i) Prove that

Hence s coplanar

(050

A15—1700/359

(ii) Prove that

$$\operatorname{curl}(f\overrightarrow{F}) = \operatorname{grad} f \times \overrightarrow{F} + f(\operatorname{curl} \overrightarrow{F})$$

where f is a scalar point function.

- (iii) Find the unit normal vector to the surface $x^2y+2xz=4$ at the point (2, -2, 3). 4+3+3=10
- 9. Answer any two parts:

5

(a) If \vec{a} , \vec{b} , \vec{c} are three vectors, then prove that

$$[\vec{a}\vec{b}\vec{c}]^2 = \begin{vmatrix} \vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} & \vec{a} \cdot \vec{c} \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} & \vec{b} \cdot \vec{c} \\ \vec{c} \cdot \vec{a} & \vec{c} \cdot \vec{b} & \vec{c} \cdot \vec{c} \end{vmatrix}$$

(b) Prove that

$$\operatorname{curl}(\vec{a} \times \vec{b}) = (\vec{b} \cdot \nabla)\vec{a} - (\vec{a} \cdot \nabla)\vec{b} + \vec{a} \operatorname{div} \vec{b} - \vec{b} \operatorname{div} \vec{a}$$
 5

(c) Show that

$$\int \left(\overrightarrow{r} \times \frac{d^2 \overrightarrow{r}}{dt^2} \right) dt = \overrightarrow{r} \times \frac{d\overrightarrow{r}}{dt} + C$$

where C is an arbitrary constant vector. If $\vec{r}(t) = 5t^2\hat{i} + t\hat{j} - t^3\hat{k}$, then prove that

$$\int_{1}^{2} \left(\vec{r} \times \frac{d^{2}r}{dt^{2}} \right) dt = -14\hat{i} + 75\hat{j} - 15\hat{k}$$
2+3=5

A15-1700/359

(Continued)

- 10. Answer any one p
 - (a) (i) Evaluate

a closed cylinder x = 0, y = 0

(ii) Verify Gre for

 $\oint_C (x^2 - x^2 - x^2)$

where C is (0, 0), (2,

- (b) (i) Find the a particle the xy-pla at the regif the force
 - (ii) State Gau

 $\vec{F} = (2x -$

 $\vec{F} = x\hat{i} - y\hat{j}$ cylinder for z = 0, z = 1