2011

CHEMISTRY

(Major)

9.33

Paper: 1.1

Full Marks: 60

Time: 21/2 hours

The figures in the margin indicate full marks for the questions

- 1. Choose the correct option/Answer the following: 1×7=7
 - (a) What is the difference between standard enthalpy of ionization $(\Delta_{\text{ion}} H^{\circ})$ and ionization energy (E_i) for sodium?
 - (b) If we plot internal energy against temperature at constant volume, then the slope of the curve at any temperature gives
 - (i) C_P of the system
 - (ii) ΔU of the system
 - (iii) C_V of the system
 - (iv) μ_{JT} of the system

12A-1500/125

(Turn Over)

- (c) How do you define the criterion for the spontaneity of any process in terms of entropy (S)?
- (d) What is the order of a decay process of a radioactive isotope?
- (e) State the first law of thermodynamics.
- (f) The rate of reaction $A+B\to P$ is given by the equation r=k[A][B]. If B is taken in large excess, the order of the reaction will be
 - (i) 2
 - (ii) 1
 - (iii) O
 - (iv) 3
- (g) When 1 mol of H_2O is added to a huge volume of pure ethanol at 25 °C, the volume increases by $14~{\rm cm}^3~{\rm mol}^{-1}$. The quantity $14~{\rm cm}^3~{\rm mol}^{-1}$ is called
 - (i) specific volume of water
 - (ii) molar volume of water
 - (iii) partial molar volume of water in ethanol
 - (iv) partial molar volume of ethanol in water

2. Answer the following:

- (a) Write two limitations thermodynamics.
- (b) Give the mathemat: Clausius inequality significance of this i
- (c) Give two example reactions catalyzed l
- (d) Obtain an expression in a reversible isoth
- 3. Answer any three of the
 - (a) What do you mean system? Give the molar enthalpy of enthalpy of combus -393 · 51 kJ mol⁻¹ are is -393 · 412 kJ mol enthalpy of the tran

C (s, graphite) \rightarrow

(b) Starting from the of free energy (G), dedu to show the variation Based on these necessary graphs to of G with T and P for gaseous phases of a

(Continued)

12A-1500/125

12A-1500/125

For the reaction $A \rightarrow P$, the rate law is given by

$$\frac{-d[A]}{dt} = k[A]^{1/2}$$

- (i) Integrate the rate law.
- (ii) On the basis of this integrated rate law, draw a plot of $[A]^{1/4}$ against t.
- (iii) Derive an expression for half-life period in terms of k and $[A]_0$.
- (d) Deduce the fundamental equations of thermodynamics for a closed system. From these fundamental equations. obtain Maxwell relations. Using Maxwell relation. deduce thermodynamic

equation of state.

Explain the principle of steady-state approximation. For the reaction $2NO + Cl_2 = 2NOCl$

the following mechanism has proposed:

$$NO + Cl_2 \xrightarrow{k_1} NOCl_2$$

$$NO + NOCl_2 \xrightarrow{k_2} 2NOCl_2$$

Assuming $k_2[NO] \ll [Cl_2]$, derive the rate law.

than C_{V} . (ii) Show that ent state function.

Explain why

(iii) What is an A can you obta reaction?

Or

(i) How much nor be obtained fro 1.00 mol of CI

condition at 2

[Given $\Delta S^{\circ} = 1$

starting from

required for 9

 $\Delta H^{\circ} = -890 \text{ kJ}$ (ii) Show how thermodynami

(iii) Discuss one e for the determi a reaction.

Show that for time re completion is

12A-1500/125

12A-1500/**125**

(Continued)

1+2+2

(ii) Deduce Kirchhoff's equation to show the variation of enthalpy of a reaction with temperature.

(iii) Calculate $\Delta_r H^o$ at 373 K for the reaction

$$\frac{1}{2}N_2(g) + O_2(g) \rightarrow NO_2(g)$$

Enthalpy of the reaction at 298 K is $-33 \cdot 18 \text{ kJ mol}^{-1}$. Molar heat capacity of NO₂(g), O₂(g) and N₂(g) are $37 \cdot 20 \text{ JK}^{-1} \text{ mol}^{-1}$, 29 $\cdot 36 \text{ JK}^{-1} \text{ mol}^{-1}$ and 29 $\cdot 13 \text{ JK}^{-1} \text{mol}^{-1}$ respectively.

Assume that heat capacities are independent of temperature. 3+3+4

Oı

(i) What is an adiabatic process? For the reversible adiabatic expansion of an ideal gas, show that

 $PV^{\gamma} = \text{constant}$

where
$$\gamma = \frac{C_{p, i}}{C_{\nu, i}}$$

12A-1500/125

(Continued)

(ii) Derive the rate decomposition in absence of a

CH₃CHO(g) → CH₄ considering mechanism.

(iii) Calculate $K_{\rm p}$ reaction

NO(g) +

(i) Define Joule-1

if $\Delta G^{\circ} = -34 \cdot 85$

and calculate
Deduce from i

(ii) Deduce the re equilibrium cor K_x. Show that I pressure.

> Or Derive Michael

and show that Mequal to the tration at what formation of programment of the maximum of the state of the state

concentration of

12A-1500/**125**

(ii) One mole of an ideal monoatomic gas expands reversibly from a temperature of 25 °C and pressure of 1 atm to a temperature of 0 °C and pressure of 500 mm of Hg. Calculate ΔS for the process. Assume $C_V = \frac{3}{2}R$. Given that $R = 8.314 \, \mathrm{JK}^{-1} \, \mathrm{mol}^{-1}$.

10