2019

DATA STRUCTURE AND ALGORITHMS

Paper: 2·1

(New Syllabus)

Full Marks: 80

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following questions: 1×5=5
 - (a) Write the applications of queue data structure.
 - (b) Give two examples of non-linear data structure.
 - (c) Write the time complexity of insertion sort.
 - (d) What is level order traversal of a tree?
 - (e) What is recursive function?

2. Answer the following questions:

(a) Write the address translations for rowmajor ordering and column-major ordering of the dimensional arrays.

5

- (b) What is circular queue? Write the advantages of using circular queue using array representation with a suitable example. 1+4=5
- (c) What are stack overflow and stack underflow? Give example.
- (d) Evaluate the given postfix expressions using stack: 5
 - (i) 78+32+/
 - (ii) 231*+9-
- (e) Given expression

$$E = ((2+3)-(5*4))\%((6+7)*(2+5))$$

Construct the corresponding binary tree and also give the post order traversal of the same tree. 5

OR

Write the differences between static and dynamic memory allocation. 5

- 3. Answer the following questions:
 - (a) Write the PUSH and POP operation in a stack data structure. 5
 - (b) Sort the following list using quick sort and show the array after every pass:

 5
 10, 6, 5, 19, 10, 13, 4
 - (c) Write the algorithm for merge sort. 5

OR

Write the algorithm for quick sort Algorithm. 5

- 4. Answer the following questions:
 - (a) What is doubly linked list? Write the advantages of doubly linked list over singly linked list. Write the function to insert a node at end in a doubly linked list.

 3+3=6
 - (b) Construct a binary search tree using the following data elements and give the post order traversal of the tree: 2+2=4
 - 75, 43, 9, 85, 76, 14, 25, 90

3

(c) Write a program to implement insertion sort.

Write the function to implement enqueue operation in a circular queue using array representation.

- 5. Write short notes on: (any four) 4×5=20
 - (a) Non-primitive data structure
 - (b) Complexity of algorithms
 - (c) Heap sort
 - (d) In-order traversal
 - (e) Binary search
 - (f) Memory representation.

DATA STRUCTURE AND ALGORITHMS

Paper: 2·1

(Old Syllabus)

- 1. Answer the following questions: 1×5=5
 - (a) Give two examples of stack data structure.
 - (b) Give examples of non-linear data structure.
 - (c) What is a leaf node?
 - (d) Which data structure is applied for recursive function?
 - (e) Write the time complexity of merge sort.
- 2. Answer the following questions: (any five) 3×5=15
 - (a) Differentiate between internal sorting and external sorting.
 - (b) Explain stack overflow and stack underflow.

- (c) What is linked list and what are various types of linked lists? Write the advantages of linked lists over array.
- (d) Evaluate the given postfix expressions using stack:

- (e) Write the algorithm for DEQUEUE operation in a circular queue.
- (f) Give the inorder and pre-order traversal of the tree given below:

3. (a) Write the algorithm to convert an infix expression into postfix expression. 5

OR

Write the algorithm to implement quick , sort.

- (b) Sort the following list using selection sort and show the array after every pass:
 5
 - 10, 6, 2, 11, 9, 13, 4
- (c) What is 2D array? Write the address translation function for the row-major ordering and column-major ordering in a 2D array. 1+4=5
- (d) What is doubly linked list? Write the functions for the following in a doubly linked list: 1+5=6
 - (i) insert a node at end
 - (ii) delete a node at beginning.
- (e) What is binary search tree? Write the function to insert a node in a binary search tree. 1+4=5
- (f) Write the function to insert a node at end in a singly linked list.

Write	tl	he	fu	nction	to	er	queue	an
elemen	ıt	in	а	queue	usi	ng	linked	list
representation.								4

- (g) Write the algorithm for BFS.
- 5
- 4. Write short notes on: (any five) 5×5=25
 - (a) Heap sort
 - (b) Circular linked list
 - (c) Memory representation
 - (d) Hashing technique
 - (e) Complexity of algorithms
 - (f) Tree traversal.