2014

PHYSICS

(Major)

Paper : 6.4

Full Marks: 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

Write the answers to the two Groups in separate books

GROUP-A

(Statistical Mechanics)

(Marks: 30)

1. Answer the following questions:

 $1 \times 4 = 4$

- (a) How many dimensions of the phase space are required to describe a system of N particles?
- (b) Write down the expression for the ensemble average of a physical quantity.

- (c) What type of wave functions is required to describe a system of bosons?
- (d) What are the occupation numbers of a quantum state for fermions?
- **2.** Answer the following questions: $2 \times 3 = 6$
 - (a) State the postulate of equal a priori probability.
 - (b) Write the Boltzmann relation which connects statistical mechanics with thermodynamics. Hence find the entropy of a system at the absolute zero temperature.
 - (c) The relative probability of finding a system in the energy states E_1 and E_2 is e^2 . If $E_2 E_1 = 4 \cdot 83 \times 10^{-21}$ J, calculate the temperature of the system.
- 3. Answer any two of the following questions:
 - (a) Establish Liouville's theorem and give its physical interpretation. 4+1=5
 - (b) Calculate the probability of finding two particles together in any one of three different quantum states if they are (i) classical particles, (ii) bosons and (iii) fermions. 2+2+1=5

(c) Describe the phenomenon of Bose-Einstein condensation. Give one physical example of this phenomenon.

4+1=5

- 4. Answer any one of the following questions:
 - (a) Deduce the Maxwell-Boltzmann energy distribution law

$$n(u) du = \frac{2\pi N}{(\pi kT)^{3/2}} u^{1/2} e^{-u/kT} du$$

Represent this distribution graphically.

9+1=10

(b) What is the Fermi energy? Find an expression for the Fermi energy using Fermi-Dirac statistics.

Calculate the Fermi energy in copper provided number density of free electrons is 8.5×10^{28} electrons/m³.

2+6+2=10

GROUP-B

(Computer Applications)

· (Marks: 30)

5. Answer the following:

 $1 \times 4 = 4$

(a) Write down the input and output statements used in either FORTRAN-95 or C or C⁺⁺.

14A-1000/1324

(Turn Over)

- (b) Write down the FORTRAN-95 or C or C^{++} expression for the algebraic expression $a = x + \frac{y}{z} r^2 + c^3$.
- (c) How the following mathematical functions are invoked in FORTRAN-95 or C or C⁺⁺?
 - (i) Absolute value of x
 - (ii) y to the power z
- (d) What is nested loop?
- 6. Answer the following:

2×3=6

- (a) Briefly explain a statement use to implement looping in either FORTRAN-95 or C or C⁺⁺.
- (b) What is an array? Write down the syntax for declaration of a one-dimensional array in either FORTRAN-95 or C or C⁺⁺.
- (c) Write down the FORTRAN-95 or C or C⁺⁺ comparison operator corresponding to mathematical sysmbols (i) =, (ii) ≠, (iii) ≥ and (iv) ≤.

7. Answer either (a) or (b):

5

(a) Write down the flowchart and a program in either FORTRAN-95 or C or C⁺⁺ to find the sum of the following series:

$$1+3+5+...+25$$

(b) Write down the algorithm and a program in either FORTRAN-95 or C or C⁺⁺ to generate first fifteen numbers of the series

8. Answer either (a) or (b):

5

- (a) Prepare a program in either FORTRAN-95 or C or C⁺⁺ to compute the real as well as imaginary roots of the quadratic equation $ax^2 + bx + c = 0$.
- (b) Write down the flowchart and a program to compute the approximate value of the real root of the following equation:

$$x^7 - 2x^4 + x - 8 = 0$$

9. Answer either (a) or (b):

10

(a) Write down the necessary relation to compute the numerical solution of a first-order differential equation using Runge-Kutta fourth order method. Develop an algorithm and write a program in either FORTRAN-95 or C or C⁺⁺ to compute the numerical solution of the equation

$$\frac{dy}{dx} = \frac{1}{2}(1+x)y^2$$

in the interval [0, 1] having initial value y = 1 at x = 0 and step size h = 0.1 using Runge-Kutta fourth order method.

(b) Give the mathematical relations used to compute numerical value of an integral using Simpson's one-third rule. Write the flowchart and a program in either FORTRAN-95 or C or C⁺⁺ to compute the numerical value of the integral

$$\int_0^1 \frac{dx}{1+x^2}$$

using Simpson's one-third rule.

