2015

PHYSICS

(Major)

Theory Paper: M-6.2

Full Marks - 60

Time - Three hours

The figures in the margin indicate full marks for the questions.

GROUP - A

(Mathematical Methods)

- 1. Answer any two from the following: $1 \times 2=2$
 - (a) Evaluate the following sum,

$$\sum_{j=1,2,3} \delta_j^l \ A^j$$

(b) Give two physical examples of a second rank tensor.

Turn over

(c) Show that

$$\left(\delta_m^i \ \delta_p^k + \delta_p^i \ \delta_m^k\right) \, w_{ik} \, = w_{mp} + w_{pm}$$

- 2. Answer any four from the following: $2\times4=8$
 - (a) Show that $\delta_i^j U^i V^j$ behaves like dot product of $\overrightarrow{U} = U^1 \hat{i} + U^2 \hat{j} + U^3 \hat{k}$ and

$$\overrightarrow{V} = V^1\, \hat{i} + V^2 \hat{j} + V^3 \hat{k} \; . \label{eq:V2}$$

- (b) If T_{mn}^{ij} = A^{ij} B_{mn} is a mixed tensor of rank 4 constructed by outer product of A^{ij} and B_{mn} construct a tensor of rank O by the process of contraction.
- (c) g_j is a symmetric covariant tensor in 3-dimention (i, j=1,2,3). Expressing it in a matrix form, show that it has 6 independent components.
- (d) If $x = x^1$, $y = x^2$, $z = x^3$, show that $\sum_{i = 1, 2, 3} \frac{\partial^2 \phi}{\partial x^i \partial x^j} \delta^i_j = \nabla^2 \phi$
- (e) What is the rank of the quantity A ^{ijkl} B_{ijkp}? What do you mean by an invariant?

- 3. Answer any *one* of the following: $5 \times 1=5$
 - (a) If Aⁱ and B_i are two contravariant and covariant tensors respectively, show that Aⁱ B_i is invariant under coordinate transformation xⁱ → x'ⁱ.
 - (b) If $A^i + B^i = 0$ in a coordinate system x^i , show that $A'^i + B^{ij} = 0$ after a coordinate transformation, $x^i \rightarrow x'^i$.
 - (c) If $\frac{\partial x^p}{\partial x^q} = \delta_q^p$ and A_j is a covariant tensor of rank 1, show that

 $C^{i} = B^{ij}A_{j}$ transforms like a contravarient tensor of rank 1 under coordinate transformation $x^{i} \rightarrow x'^{i}$. Here B^{ij} is an arbitrary contravariant tensor of rank 2.

GROUP - B

(Solid State Physics)

- 1. Choose the correct answer from the following: $1 \times 7 = 7$
 - (a) All crystals must possess
 - (A) Translational symmetry

(B)	Rotational symmetry
(C)	Reflection symmetry
(D)	Inversion symmetry

- (b) Madelung constant relates to the strength of bonding energy in
 - (A) Van der Waals solids
 - (B) Hydrogen bonded solids
 - (C) Ionic solids
 - (D) Covalent solids
- (c) Root cause of presence of energy bands in solids is
 - (A) bonding in solids
 - (B) periodicity of atoms / molecules
 - (C) presence of free electrons
 - (D) presence of ion cores
- (d) In intrinsic semiconductors
 - (A) number of electrons is much larger than the number of holes
 - (B) number of holes is much larger than the number of holes
 - (C) These numbers are nearly equal
 - (D) These numbers are exactly equal

(e)	Meissner effect ensures that a superconductor is
	(A) a perfect conductor
	(B) a perfect diamagnet
	(C) a perfect insulator
	(D) a perfect paramagnet
(f)	The type of magnetism that is present in all materials is
	(A) diamagnetism
	(B) paramagnetism
, "	(C) ferromagnetism
	(D) ferrimagnetism
(g)	Susceptibility of a ferromagnatic material is
	(A) small positive quantity
•	(B) small negative quantity
	(C) very large positive quantity
	(D) nearly zoro.
	e very short answers to the following tions: 2×4=8
(a)	Differentiate amorphous and crystalline solids giving examples.

[Turn over

49/3 (Sem 6) PHY M2

- (b) What do you understand by cohesive energy of ionic crystals?
- (c) What are type-II superconductors?
- (d) Draw hysteresis loop for ferromagnetic material and label different parts.
- 3. Give short answers to any *two* of the following questions: $5\times2=10$
 - (a) Calculate the glancing angle on the cube surface of a rock salt crystal with a = 2.814A° corresponding to second order diffraction of 0.710 A° wavelength X-ray.
 - (b) Illustrate briefly the Sommerfeld free electron model for metals.
 - (c) Differentiate metal, insulator and semiconductor in terms of their electrical conductivity and its temperature dependence.
 - (d) What is Larmor frequency? Calculate the Larmor frequency for the orbital momentum of the electron in a magnetic field B=1w/m².

- 4. Answer any two questions from the following: 10×2=20
 - (a) What is a Bravais lattice? What are different Bravais lattices in three dimension? Explain with suitable example that no other Bravais lattices apart from those listed will be possible.

 2+6+2=10
 - (b) Write an essay on bonding in solids. 10
 - (c) Obtain expressions for electrical and thermal conductivity of metals and thence derive Wiedemann-Franz relatio. 4+4+2=10
 - (d) What are ferromagnetic materials? Illustrate in detail about Weiss molecular theory of ferromagnetism. 2+8=10