2019

MATHEMATICS

(General)

Paper: 6.1

(Linear Algebra and Complex Analysis)

Full Marks: 80

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer either in English or in Assamese

- Answer the following questions : 1×10=10
 নিয়োক্ত প্ৰশ্নবোৰৰ উত্তৰ দিয়া :
 - (a) Is set {(1, 0), (1, 1)} a basis for $\mathbb{R}^2(\mathbb{R})$? {(1, 0), (1, 1)} সংহতিটো $\mathbb{R}^2(\mathbb{R})$ -ৰ এটা ভূমি হয়নে ?
 - (b) Write the rank of the unit matrix

$$I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

একক মৌলকক্ষ
$$I_3=egin{bmatrix}1&0&0\\0&1&0\\0&0&1\end{bmatrix}$$
-ৰ কোটি লিখা।

- (c) U is a subspace of the vector space V(F) and $a \in F$. Is aU = U? V(F) সদিশ স্থানৰ U এখন উপস্থান আৰু $a \in F$. তেন্তে aU = U হয়নে ?
- (d) Mention Cauchy-Riemann equations. ক'ছি-ৰিমানৰ সমীকৰণসমূহ উল্লেখ কৰা।
- (e) Give an example of a finite vector space. এখন সসীম সদিশ স্থানৰ উদাহৰণ দিয়া।
- (f) Define analytic function.
 বৈশ্লেষিক ফলনৰ সংজ্ঞা দিয়া।
- (g) Can an elementary transformation change the rank of a matrix? প্ৰাথমিক ৰূপান্তৰণ এটাই মৌলকক্ষৰ কোটি পৰিবৰ্তন কৰিব পাৰেনে?
- (h) Which of the following functions is a linear transformation from \mathbb{R}^2 to \mathbb{R}^2 ? নিমোক্ত কোনটো ফলন \mathbb{R}^2 -ৰ পৰা \mathbb{R}^2 -লৈ এটা ৰৈখিক ৰূপান্তৰ ?

(i)
$$\mathscr{T}(x, y) = (x - y, x + y)$$

(ii)
$$\mathscr{T}(x, y) = (x+1, y-1)$$

(iii)
$$\mathscr{T}(x, y) = (x^2, y^2)$$

(i) Write the normal form of the matrix \mathcal{A} , where

৵ মৌলকক্ষৰ প্ৰসামান্য ৰূপটো লিখা. য'ত

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

- (j) Is the set $S = \{(1, 0, 0), (0, 1, 0)\}$ linearly independent subset of vector space $V_3(\mathbb{R})$? $S = \{(1, 0, 0), (0, 1, 0)\}$ সংহতিটো $V_3(\mathbb{R})$ সদিশ স্থানৰ এটা ৰৈখিকভাৱে স্বতন্ত্ব উপসংহতি হয়নে?
- 2. Answer any two of the following questions:

 $2 \times 2 = 4$

তলত দিয়া প্ৰশ্নবোৰৰ যি কোনো দুটাৰ উত্তৰ লিখা :

- (a) If two vectors in a vector space are linearly dependent, then show that one vector is a scalar multiple of the other. যদি এখন সদিশ স্থানৰ দুটা মৌল বৈধিকভাৱে প্ৰতন্ত্ৰ হয়, তেন্তে দেখুওৱা যে সিহঁতৰ এটা আনটোৰ স্কেলাৰ গুণফল।
- (b) Prove that $U = \{(0, a, b) : a, b \in \mathbb{R}\}$ is a linear subspace of $\mathbb{R}^3(\mathbb{R})$. প্রমাণ কৰা যে $U = \{(0, a, b) : a, b \in \mathbb{R}\}$ সংহতিটো $\mathbb{R}^3(\mathbb{R})$ -ৰ এটা বৈধিক উপস্থান।
- (c) If $T: U(F) \to V(F)$ is a linear mapping, then show that T(-u) = -T(u), $\forall u \in U$. যদি $T: U(F) \to V(F)$ এটা বৈধিক ফলন হয়, তেন্তে দেখওৱা যে T(-u) = -T(u), $\forall u \in U$.
- 3. Answer any three of the following questions:

2×3=6

তলত দিয়া প্ৰশ্নবোৰৰ যি কোনো তিনিটাৰ উত্তৰ লিখা:

(a) Show that $u=e^x\cos y$ is a harmonic function. দেখুওৱা যে, $u=e^x\cos y$ এটা হ্ৰাণ্মক ফলন।

(b) If
$$f(z) = \frac{x^3 y(y - ix)}{x^6 + y^2}$$
, $z \neq 0$, $f(0) = 0$, then

prove that

$$Lt_{z\to 0} \frac{f(z) - f(0)}{z} = 0$$

where $z \rightarrow 0$ along any radius vector.

যদি
$$f(z) = \frac{x^3 y(y - ix)}{x^6 + u^2}$$
, $z \neq 0$, $f(0) = 0$, তেন্তে

প্ৰমাণ কৰা যে

য'ত যি কোনো সদিশ ব্যাসার্ধই দি $z \rightarrow 0$ হয়।

(c) Prove that (প্ৰমাণ কৰা যে)

$$\frac{d}{dz}(\log_e z) = \frac{1}{z}$$

(d) If $z_1, z_2 \in \mathbb{C}$, then prove that $|z_1 + z_2|^2 + |z_1 - z_2|^2 = 2(|z_1|^2 + |z_2|^2)$ যদি $z_1, z_2 \in \mathbb{C}$, তেন্তে প্ৰমাণ কৰা যে,

$$|z_1 + z_2|^2 + |z_1 - z_2|^2 = 2(|z_1|^2 + |z_2|^2)$$

4. Answer any *four* of the following questions:

5×4=20

2.5

তলত দিয়া প্ৰশ্নবোৰৰ যি কোনো চাৰিটাৰ উত্তৰ লিখা :

(a) Prove that a non-empty subset W of a vector space V(F) is a subspace, if $a, b \in F, u, v \in W \Rightarrow au + bv \in W$

প্ৰমাণ কৰা যে V(F) সদিশ স্থানৰ এটা অশ্ন্য উপসংহতি W এখন উপস্থান হ'ব. যদি

 $a, b \in F, u, v \in W \Rightarrow au + bv \in W$

- (b) Show that the vectors (1, 1, 0, 0), (0, 1, -1, 0) and (0, 0, 0, 3) in ℝ⁴ are linearly independent. দেশুওৱা যে ℝ⁴-ৰ (1, 1, 0, 0), (0, 1, -1, 0) আৰু (0, 0, 0, 3) ভেট্টৰকেইটা বৈধিকভাৱে স্থতন্ত্ৰ।
- (c) Prove that any superset of a linearly dependent set is linearly dependent.
 প্রমাণ কৰা যে বৈধিকভাৱে পৰতন্ত্ব সংহতিৰ যি কোনো অধিসংহতি বৈধিকভাৱে পৰতন্ত্ব।
- (d) If S and T are subsets of a vector space V(F), then show that

$$L(S \cup T) = L(S) + L(T)$$

যদি S আৰু T সংহতি দুটা এখন সদিশ স্থান V(F)-ৰ উপসংহতি হয়, তেন্তে

$$L(S \cup T) = L(S) + L(T)$$

(e) Prove that $W_1\cap W_2$ is a subspace of V(F), if W_1 and W_2 are subspaces of V(F). যদি W_1 আৰু W_2 সংহতি দুটা V(F) সদিশ স্থানৰ উপস্থান হয়, তেন্তে $W_1\cap W_2$ ও V(F)-ৰ এটা উপস্থান হ'ব বুলি প্ৰমাণ কৰা।

(f) Show that the function $f: V_3(F) \to V_2(F)$ defined by $f(x_1, x_2, x_3) = (x_2, x_3)$ is a linear transformation.

প্ৰমাণ কৰা যে $f(x_1,\ x_2,x_3)=(x_2,\ x_3)$ -ৰ দ্বাৰা সংজ্ঞাবদ্ধ $f:V_3(F)\to V_2(F)$ ফলনটো এটা ৰৈখিক ৰূপান্তৰণ ।

5. Answer any two of the following questions:

5×2=10

তলত দিয়া প্ৰশ্নবোৰৰ যি কোনো দুটাৰ উত্তৰ লিখা :

- (a) Prove that f(z) = u(x, y) + iv(x, y) is continuous at $z_0 = x_0 + iy_0$, iff u(x, y) and v(x, y) are continuous at (x_0, y_0) .

 প্রমাণ কবা যে f(z) = u(x, y) + iv(x, y) ফলনটো $z_0 = x_0 + iy_0$ বিন্দৃত অবিচ্ছিন্ন, যদি আৰু যদিহে u(x, y) আৰু v(x, y) ফলন দুটা (x_0, y_0) বিন্দৃত অবিচ্ছিন্ন।
- (b) Using Cauchy's integral formula, evaluate $\oint_C \frac{z^3}{z-2i} dz$, where C is the circle |z-2|=5.

 C-মে |z-2|=5 বৃত্তটোক বুজালে ক'ছিব সমাকলন সূত্ৰ ব্যৱহাৰ কৰি $\oint_C \frac{z^3}{z-2i} dz$ -ৰ মান নিৰ্ণয় কৰা।
- (c) State and prove Cauchy's integral formula.
 ক'ছিৰ সমাকলন সূত্ৰটো উল্লেখ কৰা আৰু প্ৰমাণ কৰা।

6. Verify Cayley-Hamilton theorem for the following matrix A and hence find A⁻¹: 10 নিয়োক্ত মৌলকক্ষ A-ৰ বাবে কেলি-হেমিল্টন উপপাদ্যটো প্রতিপন্ন কৰা আৰু তাৰপৰ A⁻¹ নির্ণয় কৰা:

$$A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

Or / অথবা

Find all eigenvalues and eigenvectors of the matrix A, where

A মৌলকক্ষৰ সকলোবোৰ আইগেন মান আৰু আইগেন ভেক্টৰ উলিওৱা, য'ত

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

7. State various elementary transformations of a matrix. Reduce the following matrix A to normal form and hence find its rank:

3+6+1=10

মৌলকক্ষৰ বিভিন্ন প্ৰাথমিক ৰূপান্তৰসমূহ লিখা। তলৰ Aমৌলকক্ষটো প্ৰসামান্য আকাৰলৈ ৰূপান্তৰ কৰা আৰু তাৰ পৰা ইয়াৰ কোটি নিৰ্ণয় কৰা :

$$A = \begin{bmatrix} 1 & 2 & 1 & 0 \\ -2 & 4 & 3 & 0 \\ 3 & 0 & 4 & -5 \end{bmatrix}$$

Or / অথবা

What is meant by echelon form of a matrix? Reduce the following matrix to echelon form and hence find its rank:

10

মৌলকক্ষৰ ইকেলন আকাৰ বুলিলে কি বুজায়? তলৰ মৌলকক্ষটো ইকেলন আকাৰত প্ৰকাশ কৰা আৰু তাৰ পৰা কোটি নিৰ্ণয় কৰা :

$$\begin{bmatrix} 3 & -2 & 0 & -1 \\ 0 & 2 & 2 & 1 \\ 0 & 1 & 2 & 1 \\ 1 & -2 & -3 & 2 \end{bmatrix}$$

8. Prove that $\oint_C \frac{z^2 - z + 1}{z - 1} dz = 2\pi i$, where C is the circle |z| = 1.

10

প্ৰমাণ কৰা যে $\oint_C \frac{z^2-z+1}{z-1}\,dz=2\pi i$, য'ত C হৈছে |z|=1 বৃত্ত।

Or / অথবা

Find the analytic function whose real part is

$$u = e^{-x}[(x^2 - y^2)\cos y + 2xy\sin y]$$

Also show that u is harmonic.

$$u = e^{-x}[(x^2 - y^2)\cos y + 2xy\sin y]$$

বাস্তৱ অংশবিশিষ্ট বৈশ্লেষিক ফলনটো নির্ণয় করা। লগতে দেখণ্ডরা যে u এটা হরাত্মক ফলন।
