2015

PHYSICS

(Major)

Paper: 5.3

(Quantum Mechanics and Astrophysics)

Full Marks: 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

Write the answers to the two Groups in separate books

GROUP-A

(Quantum Mechanics)

(Marks: 40)

- 1. Answer any four questions as directed: 1×4=4
 - (a) What physical phenomenon proves the particle nature of light?
 - (b) A krypton atom emits a photon of orange light with wavelength $\lambda \approx 606$ nm. What is the corresponding photon energy?

- (c) In Compton scattering, which one of the following is true?
 - (i) The wavelength of scattered light is same as the wavelength of incident light
 - (ii) The incident photon is absorbed by the electron
 - (iii) The scattered wavelength is larger than the incident wavelength
 - (iv) The scattered wavelength is smaller than the incident wavelength (Choose the correct option)
- (d) According to de Broglie hypothesis, the kinetic energy of a particle of mass m is

(i)
$$k = h^2 / 2m\lambda^2$$

(ii)
$$k = mc^2$$

(iii)
$$k = mc^2 \left(1 - \frac{v^2}{c^2} \right)$$

(iv)
$$k = \frac{mc^2}{\left(1 - \frac{v^2}{c^2}\right)^{1/2}}$$

(Choose the correct option)

- (e) Can the particle and wave nature be simultaneously observed?
- (f) An electron is confined within a region of width $1 \cdot 0 \times 10^{-10}$ m. Estimate the minimum uncertainty in the momentum of the particle.

 (Given $\hbar \approx 1 \cdot 05 \times 10^{-34}$ J-sec)

2. Answer any two questions:

 $3 \times 2 = 6$

- (a) A non-relativistic free particle of mass m has kinetic energy k. Obtain an expression for the de Broglie wavelength. What is the de Broglie wavelength for an electron having kinetic energy 800 eV? Given electron mass $m_e \approx 9 \cdot 1 \times 10^{-31}$ kg. $1\frac{1}{2} + 1\frac{1}{2} = 3$
- (b) A particle with total energy E is influenced by a potential energy V(x). Show that the one-dimensional Schrödinger equation can be written in the form

$$\left[\frac{d^2}{dx^2} + k^2 - U(x)\right] \psi(x) = 0$$

where

$$k^2 = 2mE / \hbar^2$$
 and $U(x) = 2mV(x) / \hbar^2$

If the wave function of a particle is $\psi(x, y, z, t) = \psi(x, y, z)e^{-iEt/\hbar}$, then show that the probability of finding the particle at the point (x, y, z) is independent of time. 2+1=3

(c) If the wave function of a particle confined in a box of length L is

$$\psi(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{\pi x}{L}\right)$$

obtain the expectation value of the position $\langle x \rangle$ of the particle.

(d) Two quantum particles are travelling along X-axis in opposite direction. Their wave functions are combined to produce a resultant wave $\psi(x, t) = A\cos(kx)e^{-i\omega t}$. What is the probability of current density j for this wave function? Interpret your result.

(Continued)

3. Answer any two questions :

5×2=10

- (a) The photoelectric work function W for lithium is 2·3 eV. Find the threshold frequency. If the ultraviolet light of wavelength λ = 3000 Å is incident on a lithium surface, calculate the maximum kinetic energy of the photoelectrons. Briefly discuss how the wave theory of light fails to explain the photoelectric effect.
- (b) Prove that the angle ϕ , at which the electron in Compton effect recoils, is related to the angle θ of scattered photon as

$$\tan \phi = \frac{\cot(\theta/2)}{1 + E_0/mc^2}$$

Where $E_0 = hc/\lambda = \text{energy}$ of incident photon and m is the rest mass of the electron.

An X-ray photon with wavelength $\lambda=1$ Å is scattered by a free electron at rest. The scattering angle is $\theta=60^\circ$ from the incident direction. Calculate the Compton shift $\Delta\lambda$. 3+2=5

(c) In an electron diffraction experiment, electrons are accelerated by an electric potential V. Show that the de Broglie wavelength of an electron of mass m is

$$\lambda = \frac{h}{\sqrt{2meV}}$$

where e is the electronic charge. The kinetic energy of a particle in a gas with temperature T (kelvin) is $\frac{3}{2}k_{\rm B}T$. What is the de Broglie wavelength of a thermal neutron at T=300 K? Here $k_{\rm B}$ is the Boltzmann constant $\approx 1\cdot 38\times 10^{-23}$ J/K and neutron mass is $m\approx 1\cdot 6\times 10^{-27}$ kg. Write down the relativistic formula for de Broglie wavelength. 2+2+1=5

4. Answer any two questions:

5×2=10

(a) What are the properties satisfied by a physical wave function? Normalize the wave function

$$\psi(x) = Ae^{-(\frac{\alpha}{2})x^2}$$

to unity in the domain $x \in [-\infty, \infty]$. Here α is a constant. Given $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$. 2+3=5

(b) A particle of mass m is confined in a one-dimensional potential box of infinite height given as

$$V(x) = \infty$$
 for $x = 0$, $a = 0$ for $0 < x < a$

Show that the energy of the particle in *n*th quantum state is

$$E_n = \frac{n^2 \pi^2 \hbar^2}{2ma^2}$$
 5

(c) For a linear harmonic oscillator potential $V(x) = \frac{k}{2}x^2$, show that the Schrödinger equation (time-independent) takes the form

$$\frac{d^2\psi(\xi)}{d\xi^2} + (\lambda - \xi^2)\psi(\xi) = 0$$

where

$$\lambda = 2E / \hbar \omega$$
, $\omega = \sqrt{k / m}$

and
$$\xi^2 = \left(\frac{mk}{\hbar^2}\right)^{1/2} x^2 = \left(\frac{m\omega}{\hbar}\right) x^2$$

or
$$\xi = \alpha x$$
 where $\alpha = \sqrt{m\omega/\hbar}$.

5. Answer any two questions:

5×2=10

- (a) Normalize the wave function $\psi(x) = A/x^2$ between x = 1, x = 3. What is the probability of finding a particle between x = 4 and x = 5? 2+3=5
- (b) What is the significance of Heisenberg's uncertainty principle? A proton is confined to a nucleus of dimension $\Delta x \approx 10^{-15}$ m. Calculate the uncertainty in its momentum. What is the minimum kinetic energy of the proton? Given proton mass $m \approx 1.6 \times 10^{-27}$ kg. 1+2+2=5
- (c) Briefly discuss the Davisson-Germer experiment and its implications.

GROUP-B

(Astrophysics)

(Marks : 20)

- **6.** Answer any three from the following: $2 \times 3 = 6$
 - (a) Name two bright stars in the night sky. Show the right ascension and declination in a neat celestial diagram.

1+1=2

- (b) Are the altitude and azimuth of a star same for all observers on the earth?What do you mean by ecliptic? 1+1=2
- (c) The star ξ Ursae Majoris has a parallax angle of $\theta \approx 0^{\prime\prime} \cdot 127$. Calculate its distance.
- (d) An astronomer wants to observe a star with right ascension (α) and declination (δ) as

(23^h20^m39^s +18°08'33'')

Which hemisphere of the earth would be the best for observing? If the star is at the meridian, what would be the sidereal time? 1+1=2

(e) A star has apparent blue magnitude $m_B = 12.4$ and the colour index is $m_B - m_V = 0.6$. If the absolute magnitude in visual band is $M_V = 6.8$, calculate the distance to the star.

2

7. Answer any two of the following:

4×2=8

- (a) Draw a neat H-R diagram showing the main sequence, red giant, red supergiant and the white dwarf stars. Identify the location of a hot blue and a reddish cool star in the main sequence. Show the evolutionary track of a sunlike star in the H-R diagram. 1½+1+1½=4
- (b) What is the energy generation mechanism inside the main-sequence stars? Which reaction cycle dominates the energy production in massive stars with high central temperature? Discuss the proton-proton chain for the synthesis of helium. 1+1+2=4
- (c) The peak wavelength emitted by a star $b = \lambda_{max}$ is $\lambda_{max} \approx 4000$ Å. Calculate the surface temperature of the star. Given Wien's constant, $b \approx 0.29$ cm-K. The luminosity L, radius R and surface temperature T of a star are related by Stefan-Boltzmann law $L = 4\pi R^2 \sigma T^4$. The corresponding quantities for the sun are L_{\odot} , R_{\odot} and T_{\odot} .

A star's surface temperature is $\frac{1}{2}T_{\circ}$ but its luminosity is 10^4L_{\circ} . How much big is the star compared to the sun? Can you give example of one such star in the night sky? $1\frac{1}{2}+1\frac{1}{2}+1=4$

- **8.** Write short notes on any *two* of the following: 3×2=6
 - (a) Red giants
 - (b) Astronomical coordinate system
 - (c) Supernova
 - (d) Expanding universe

* * *