2018

PHYSICS

(Major)

Paper: 5.1

Full Marks: 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

GROUP-A

(Mathematical Methods)

(Marks: 30)

- 1. Answer the following questions: 1×4=4
 - (a) What is analytic function?
 - (b) Define a complex variable.
 - (c) State De Moivre's theorem.
 - (d) Find out $(i)^{1/2}$.

- 2. (a) Verify whether the function $f(z) = 3z^2 + 2$ is an analytical function or not.
 - 2
 - (b) Demonstrate a graphical representation of complex variable through Argand diagram.
- 2
- 3. Find the complex conjugate of the functions

$$(x+iy)\cdot(a+ib)$$
 and $\frac{x-iy}{a+ib}$

where x, y, a and b are real.

4

Or

Obtain the residues of the function

$$f(z) = \frac{1}{z^2 + a^2} \quad a > 0$$

4. Give the Laurent series expansion for f(z). Obtain the Laurent expansion for the function

$$f(z) = \frac{1}{z(z-1)}$$
 about $z_0 = 0$ 2+3=5

- 5. (a) (i) Define isolated singular point and non-isolated singularity.
- 2
- (ii) Using residue theorem, evaluate

$$\int_0^{2\pi} \frac{d\theta}{5 + 4\cos\theta}$$
 5

Or

State and prove Taylor's theorem.

2+5=7

(b) State and prove Cauchy-Riemann conditions for analytical functions.

2+4=6

Or

Show that
$$\int_{-\infty}^{\infty} \frac{1}{(1+x^2)^2} dx = \frac{\pi}{2}$$
.

GROUP-B

(Classical Mechanics)

(Marks : 30)

- **6.** Answer the following questions/Choose the correct option: 1×4=4
 - (a) What is reversed effective force?
 - (b) What do you mean by holonomic constraint?
 - (c) For a conservative system, the potential energy does not depend upon
 - (i) force
 - (ii) generalised velocity
 - (iii) generalised coordinate
 - (iv) None of the above
 - (d) If a coordinate does not appear in Lagrangian, then it is called
 - (i) cyclic
 - (ii) non-cyclic
 - (iii) free
 - (iv) holonomic

7. Answer any two of the following questions:

 $2 \times 2 = 4$

- (a) Define virtual displacement and discuss its significance.
- (b) State and explain Hamilton's principle.
- (c) Show that in a central force field the angular momentum of a particle is conserved.
- (d) Mention two properties of Poisson bracket with proof.

8. Answer any *two* of the following questions :

 $3 \times 2 = 6$

- (a) Show that the motion of a particle under central force always takes place in a plane.
- (b) Find an expression for centripetal acceleration for a bead sliding on a uniformly rotating wire.

- (c) Show that Hamiltonian H is a constant of motion if the Lagrangian L is not an explicit function of time.
- 9. (a) Set up the Lagrangian for a simple pendulum and hence obtain equation describing its motion.

Or

Find the equation of motion of a system with the following Lagrangian:

$$L = \frac{1}{2}e^{\alpha t}(\dot{x}^2 - \omega^2 x^2)$$

where α and ω are constants.

(b) Establish the differential equation for the orbit of a particle under central force.

Or

Set up Lagrangian equation for an Atwood machine and find an expression for its acceleration.

A9/274

4

4

10. What is d'Alembert's principle? Obtain

Lagrange's equation of motion for a

conservative system using d'Alembert's

principle. 2+6=8

Or

Define Hamiltonian of a system and establish Hamilton's canonical equations.

2+6=8

* * *