2018

PHYSICS

(Major)

Paper: 5.4

(Electronics)

Full Marks: 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Answer the following questions very briefly:

 $1 \times 7 = 7$

- (a) What is meant by race-around condition in flip-flop?
- (b) What is surface leakage current in a junction diode?
- (c) The basic principle of a power amplifier does not violate the law of conservation of energy. Explain.
- (d) What is current gain of a transistor?
- (e) In an amplitude modulation, the value of modulation index m_a is equal to 1. What is the physical meaning of it?

- (f) What is the condition that must be satisfied in order to receive the maximum power by a two-terminal network from another network?
- (g) There are two basic conditions for oscillation in a feedback amplifier. What are these basic conditions?
- 2. Answer the following questions:

 $2 \times 4 = 8$

- (a) Distinguish between Zener breakdown and Avalanche breakdown in semiconductor diodes.
- (b) Determine the current I_D and the voltage v_0 in the circuit of Fig. 1, if the voltage drop across the diode is 0.7 volt.

(c) What could be the possible reasons for reduction in voltage gain of transistor R-C coupled amplifier at high frequency?

- (d) Mention one advantage and one disadvantage of single sideband transmission.
- 3. What do you mean by a clamping circuit?

 Draw the circuit diagram of a d.c. restorer.

 How does the circuit function? 1+2+2=5

Or

Explain why half-wave rectifier is called a poor device for rectification. Derive an expression for efficiency of such rectifier.

2+3=5

4. What is the basic principle of power amplifier? Draw the circuit diagram of a class B push-pull power amplifier using power transistor and derive an expression for the efficiency. What is the percentage of maximum efficiency?

1+3+1=5

Or

How can a transistor be considered as a two-port of four-terminal device? What are the variables related to input and output ports in case of a transistor? Establish the relations of h parameters with these variables for small input a.c. signal and hence draw the h parameter a.c. equivalent circuit. 1+2+2=5

5. Transform the circuit in Fig. 2 into Thevenin's equivalent circuit, where R_L is load resistance. Calculate the Thevenin's equivalent impedance and voltage. Draw the Norton's equivalent circuit. 2+2+1=5

6. Answer any *two* questions from the following:

5×2=10

- (a) Convert the decimal numbers $128 \cdot 25_{10}$ and $100 \cdot 75_{10}$ to its binary equivalent and find the difference using 2's complement method. Add binary numbers $1100 \cdot 11_2$ and $1011 \cdot 01_2$. Verify the result by converting them to decimal numbers. 3+1+1=5
- (b) Define the critical frequency of an ionospheric layer. Show that the critical frequency f_c is related to the peak electron concentration N_p of the reflecting layer by $f_c = 9\sqrt{N_p}$ (in SI unit).

2+3=5

(c) Fig. 3 shows an OP-AMP circuit with capacitor C in between inverting input and output. Express v_0 in terms of v_1 and v_2 .

Fig. 3

- (d) If an amplifier is to be unstable and oscillate it must satisfy the Nyquist criterion. What is Nyquist criterion? Explain its significance.
- **7.** Answer any *two* questions from the following: $5\times2=10$
 - (a) Define ASK, FSK and PSK methods of digital communication. Draw the diagrams of any two of them in response to a modulating signal. 3+2=5
 - (b) What are the different types of CRO?

 Lissajous figures can be employed to measure the phase difference between two signals. Briefly explain how this is measured.

 2+3=5

(Turn Over)

5

5

- (c) What is amplitude modulation? Show that in amplitude modulation two sidebands are equispaced with respect to carrier frequency.

 1+4=5
- (d) What is a bias curve of a CE mode transistor amplifier with self-bias and voltage divider arrangement? Explain the selection process of Q point in above arrangement of a transistor using bias curve.

8. Answer any *two* questions from the following: $5 \times 2 = 10$

- (a) What is discriminator? What are the processes for FM wave detection? Give a sketch of frequency response curve of the Foster-Seely detector. 1+3+1=5
- (b) Show that NOR gate is equivalent to bubbled AND gate. IC 7400 is a Quad 2-input NAND gate. It is possible to obtain AND, OR, NOT gates from this IC. How? 2+3=5
- (c) What is an integrated circuit? Describe the photolithographic etching process used in IC fabrication. 1+4=5

5

(d) Write short note on any one of the following:

5

- (i) Microprocessor
- (ii) Master slave J-K flip-flop
- (iii) Function of L-type LC filter

* * *