2018

MATHEMATICS

(Major)

Paper: 5.6

(Optimization Theory)

Full Marks: 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Answer the following questions as directed:

 $1 \times 7 = 7$

- (a) Given a system of m simultaneous linear equations in n unknowns (m < n), the number of basic variables will be
 - (i) m
 - (ii) n
 - (iii) n-m
 - (iv) n+m

(Choose the correct option)

- (b) Express the vector x = (5, 9) as the linear combination of the vectors $\alpha = (1, 2)$, $\beta = (3, 4)$.
- (c) Define a line segment joining the points x and y in \mathbb{R}^2 .
- (d) The set of all feasible solutions of an LPP is a _____ set.

(Fill in the blank)

(e) In standard form of an LPP, all the constraints are expressed in the form of equations, except for the non-negative restrictions.

(State True or False)

(f) A necessary and sufficient condition for BFS to a maximization LPP to be an optimum is (for all j)

(i)
$$z_j - c_j \ge 0$$

(ii)
$$z_j - c_j \le 0$$

(iii)
$$z_i - c_i = 0$$

(iv)
$$z_j - c_j > 0$$
 or < 0
(Choose the correct option)

(g) Which of the following is not a convex set?

(i)
$$\{(x_1, x_2): x_1^2 + x_2^2 = 1\}$$

(ii)
$$\{(x_1, x_2) : |x_1| \le 1, |x_2| \le 1\}$$

(iii)
$$\{(x_1, x_2): x_1^2 + (x_2 - 1)^2 \le 4\}$$

(iv) None of the above

(Choose the correct option)

2. Answer the following questions:

2×4=8

- (a) Show that a hyperplane in \mathbb{R}^n is a convex set.
- (b) Define the convex hull of a set $A \subseteq \mathbb{R}^n$. Determine the convex hull of the set $A = \{x_1, x_2\}$.
- (c) Prove that $x_1 = 2$, $x_2 = -1$ and $x_3 = 0$ is a solution but not a basic solution to the system of equations

$$3x_1 - 2x_2 + x_3 = 8$$
$$9x_1 - 6x_2 + 4x_3 = 24$$

(d) Write the dual of the following primal problem:

Minimize
$$Z = 5x_1 + 3x_2$$

subject to
 $3x_1 + 5x_2 = 12$
 $5x_1 + 2x_2 = 10$
with $x_1 \ge 0$, $x_2 \ge 0$

3. Answer any three parts of the following:

5×3=15

- (a) Three different types of trucks A, B and C have been used to transport a minimum of 60 tons solid and 35 tons liquid substance. A type truck can carry 7 tons solid and 3 tons liquid. B type truck can carry 6 tons solid and 2 tons liquid and C type truck can carry 3 tons solid and 4 tons liquid. The costs of transport are ₹500, ₹400 and ₹450 per truck of A, B and C type respectively. Formulate the problem mathematically so that the total transportation cost is minimum.
- (b) What is a balanced transportation problem? Describe a transportation table. Write the names of three common methods to obtain an initial basic feasible solution for a transportation problem.

 1+1+3=5

(c) Solve graphically the following linear programming problem:

Maximize
$$Z = 5x_1 + 7x_2$$

subject to
$$3x_1 + 8x_2 \le 12$$

$$x_1 + x_2 \le 2$$

$$2x_1 \le 3$$

with $x_1 \ge 0$, $x_2 \ge 0$

- (d) Prove that the set of all convex combinations of a finite number of points of $S \subseteq \mathbb{R}^n$ is a convex set.
- (e) Find out all the basic solutions of the equations:

$$2x_1 + 3x_2 + x_3 = 8$$
$$x_1 + 2x_2 + 2x_3 = 5$$

and prove that one set of solution is not feasible.

4. Solve the following LPP by simplex method: 10

 $Maximize Z = 3x_1 + 2x_2 + 5x_3$

subject to

$$x_1 + 2x_2 + x_3 \le 430$$
$$3x_1 + 2x_3 \le 460$$
$$x_1 + 4x_2 \le 420$$

with $x_1, x_2, x_3 \ge 0$

Or

Solve the following by two-phase method: 10

Maximize $Z = 5x_1 + 3x_2$

subject to

 $3x_1 + x_2 \le 1$ $3x_1 + 4x_2 \ge 12$

with $x_1, x_2 \ge 0$

5. Use Charnes Big-M method to solve the following LPP:

Maximize $Z = 3x_1 - x_2$

subject to

 $2x_1 + x_2 \ge 2$ $x_1 + 3x_2 \le 3$

 $x_2 \le 4$

with $x_1, x_2 \ge 0$

Or

Use duality to solve the following:

Minimize $Z = 3x_1 + x_2$

subject to

 $2x_1 + 3x_2 \ge 2$

 $x_1 + x_2 \ge 1$

with $x_1, x_2 \ge 0$

10

6. Solve the following transportation problem by using Vogel's approximations method for determination of IBFS and show that the optimal solution is degenerate:

10

	D_1	D_2	D_3	D ₄	a_i
o_1	10	20	5	7	15
02	18	9	12	8	25
03	15	14	16	18	5
b_j	5	15	15	10	

Or

A company has 4 machines to do 3 jobs. Each job can be assigned to one and only one machine. The cost of each job on each machine is given in the following table:

Machine

		W	X	Y	Z
Job	Α	18	24	28	32
	В	8	13	17	19
	C	10	15	19	22

Assign the jobs to different machines so as to minimize the total cost.

10

* * *