2017

MATHEMATICS

(Major)

Paper: 5.1

(Real and Complex Analysis)

Full Marks: 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

- **1.** Answer the following questions: $1 \times 7 = 7$
 - (a) Define limit of a function of two variables.
 - (b) Write a sufficient condition for the equality of f_{xy} and f_{yx} , symbols have their usual meanings.
 - (c) Give an example of a function which is not continuous but Riemann integrable.

- (d) Find the fixed points of the transformation $w = \frac{2z+3}{z-4}$, z is a complex number.
- (e) If W is a bilinear transformation and $W(z_i) = w_i$, i = 1, 2, 3, 4, then find $W\left(\frac{(z_4 z_1)(z_2 z_3)}{(z_2 z_1)(z_4 z_3)}\right)$, where z_i , for i = 1, 2, 3, 4 are complex numbers.
- (f) Let C_1 and C_2 be two simple closed curves, then show that $\oint_{C_1} z \, dz = \oint_{C_2} z \, dz$.
- (g) "If f(z) = u(x, y) + iv(x, y) is analytic and u, v are real valued functions, then u(x, y), v(x, y) are harmonic." State whether the statement is true or not. Justify your answer.
- 2. Answer the following questions: 2×4=8
 - (a) Show that $z = \log \{(x-a)^2 + (y-b)^2\}$, satisfies $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$, except at (a, b).
 - (b) Prove that the function $f(x, y) = x^2 2xy + y^2 + x^4 + y^4$ has a minima at the origin.

(Continued)

- (c) If P^* be a refinement of a partition P, then for a bounded function f, prove that $L(P^*, f) \ge L(P, f)$, symbols have their usual meanings.
- (d) Evaluate $\left(\lim_{z\to 0} \frac{\overline{z}}{z}\right)$.
- 3. Answer any three parts:

5×3=15

(a) If V is a function of two variables x, y and $x=u\cos\alpha-v\sin\alpha$, $y=v\cos\alpha+u\sin\alpha$, where α is a constant, then show that

$$\left(\frac{\partial V}{\partial x}\right)^2 + \left(\frac{\partial V}{\partial y}\right)^2 = \left(\frac{\partial V}{\partial u}\right)^2 + \left(\frac{\partial V}{\partial v}\right)^2$$

- (b) Show that the improper integral $\int_a^b \frac{dx}{(x-a)^n}$ converges if and only if n < 1.
- (c) Show that every absolutely convergent integral is convergent.
- (d) Prove that if f(z) = u(x, y) + iv(x, y), u and v are real valued functions, is analytic, then $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$ and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$.
- (e) Evaluate $\oint_C \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)(z-2)} dz$, where C is the circle |z|=3.

- 4. Answer either (a) or (b):
 - (a) (i) Show that the limit exists at the origin but the repeated limits do not for the function f(x, y), where

$$f(x, y) = \begin{cases} x \sin\left(\frac{1}{y}\right) + y \sin\left(\frac{1}{x}\right), & xy \neq 0 \\ 0, & xy = 0 \end{cases}$$

- (ii) If $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$, then find the maximum value of xuz.
- (b) (i) Test the convergence of the integral

$$\int_0^{\frac{\pi}{2}} \frac{\sin x}{x^{p-1}} dx$$

(ii) Prove that the improper integral $\int_a^b f dx$ converges if and only if to every $\varepsilon > 0$ there corresponds $\partial > 0$ such that

$$\left| \int_{a+\lambda_1}^{a+\lambda_2} f \, dx \right| < \varepsilon, \ 0 < \lambda_1, \ \lambda_2 < \delta$$

- 5. Answer either (a) or (b):
 - (a) (i) Prove that if a function f is continuous on [a, b], then the function F, defined as $F(x) = \int_a^x f(t) dt$, $a \le x \le b$, is continuous and derivable on (a, b).

5

5

5

(ii)	If a	functio	n f	is b	ounded	and
	integ	rable	on	[a, b]	and	there
	exists a function F such that $F' = f$					
	on	[a, b],	then		prove	that
	$\int_a^b f dx = F(b) - F(a).$					

5

(b) (i) Prove that if f is a non-negative continuous function on [a, b] and $\int_{a}^{b} f \, dx = 0, \text{ then } f(x) = 0 \text{ for all } x \in [a, b].$

5

(ii) Show that f(x) = [x] is Riemann integrable on [0, 2], where [x] denotes the greatest integer not greater than x.

5

- 6. Answer either (a) or (b):
 - (a) (i) Prove that $f(z) = \frac{1}{z^2}$ is not uniformly continuous in the region $|z| \le 1$ but uniformly continuous in the region $\frac{1}{2} \le z \le 1$.

5

(ii) Find the orthogonal trajectories of the family of curves in the xy-plane defined by $e^{-x}(x\sin y - y\cos y) = \alpha$, α is a real constant.

5

- (b) (i) If f(z) is analytic inside and on a circle C of radius r and center at z=a, then prove that $|f^{(n)}(a)| \le M \frac{n!}{r^n}$, for n=0,1,2,3,... and M is a constant such that |f(z)| < M.
 - (ii) Find a bilinear transformation which maps z_1 , z_2 , z_3 of the z-plane into the points w_1 , w_2 , w_3 of w-plane respectively.

5