2017

MATHEMATICS

(Major)

Paper: 5.2

(Topology)

Full Marks: 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Answer the following questions:

 $1\times7=7$

- (a) Find the derived set of the sets $A_1 =]0, 1[$ and $A_2 = [0, 1]$ in the real line \mathbb{R} with the usual metric.
- (b) Give an example to show that the intersection of an infinite family of open sets need not be open in a metric space.
- (c) State Cantor's intersection theorem for metric spaces.
- (d) Define the usual metric on R.

- (e) Give an example to show that $\overline{A \cap B} \neq \overline{A \cap B}$, in a topological space.
- (f) Let

$$X = \{1, 2, 3, 4\}$$
 and $\mathscr{T} = \{\phi, X, \{1\}, \{2\}, \{1, 2\}, \{2, 3, 4\}\}$

Let $f: X \to X$ be defined by f(1) = 2, f(2) = 4, f(3) = 2, f(4) = 3. State whether f(3) = 3 is continuous at 3 or not.

- (g) Define a norm on the set \mathbb{C}^n .
- 2. Answer the following questions: 2×4=8
 - (a) In a metric space, every convergent sequence is a Cauchy sequence. Justify whether it is true or false.
 - (b) In the cofinite topological space (X, \mathcal{T}) , find the closure of any subset A of X.
 - (c) Show that every inner product space is a normed linear space.
 - (d) Show that in a normed linear space $(X, ||\cdot||), |||x|| ||y||| \le ||x y|| \forall x, y \in X.$
- **3.** Answer the following questions: 5×3=15
 - (a) Let (X, d) be a metric space. If x_0 is a limit point of a subset A of X, then prove that there exists a sequence $\{a_n\}$ of points of A, all distinct from x_0 , which converges to x_0 .

(b) Let (X, \mathcal{T}) be a topological space and Y be a nonempty subset of X. Prove that $u = \{G \cap Y : G \in T\}$ will be a topology on Y. Give the name of this topology. 4+1

Or

Let X and Y be topological spaces and f be a bijective mapping of X to Y. Prove that f is continuous and open if and only if it is a homeomorphism.

5

(c) If x and y are any two vectors in an inner product space $(X, <\cdot, \cdot>)$, then prove that $|< x, y>| \le ||x|| \cdot ||y||$.

5

Or

In an inner product space $(X, \langle \cdot, \cdot \rangle)$, if $x_n \to x$ and $y_n \to y$, then show that $\langle x_n, y_n \rangle \to \langle x, y \rangle$.

5

4. Answer the following questions: 10

10×3=30

(a) Let C[a, b] denote the set of all real valued continuous functions defined on [a, b]. Prove that C[a, b] is complete with respect to a suitable metric defined on it. Let (X, d) be a metric space and A be a subset of X. Prove that—

- (i) A is closed if and only if A contains all its limit points;
- (ii) a point $x \in X$ is a limit point of A if and only if every open sphere centred at x contains infinitely many points of A.
- (b) State and prove Baire's category theorem for metric spaces.

Or

Prove that a metric space is second countable if and only if it is separable.

(c) Prove that a metric space is compact if and only if every collection of closed subsets of X with the finite intersection property has a nonempty intersection.

Or

Prove that a subspace of the real line R is connected if and only if it is an interval.